Solutions to Quiz 4

1. Let $X(x)=\sin (3 x)$. Then, $u(x, t)=X(x) T(t)$ is a solution to the wave equation $u_{t t}=4 u_{x x}$ if
A. $\cosh (2 t)$
B. $\sin (3 t)$
C. None of these
D. $\sinh (6 t)$
E. $\cos (6 t)$

Solution: Since $u(x, t)=\sin (3 x) T(t)$ and $u_{t t}=4 u_{x x}$ yields

$$
4 \frac{X^{\prime \prime}}{X}=-36=\frac{T^{\prime \prime}}{T}
$$

$T(t)$ should satisfy $T^{\prime \prime}+36 T=0$. The general solution is $T(t)=C_{1} \cos (6 t)+$ $C_{2} \sin (6 t)$ so that $\cos (6 t)$ is the answer.
2. The function

$$
u(x, t)=-5 e^{-18 t} \cos (3 x)-e^{-50 t} \sin (5 x)+9 x+7
$$

is a solution to
A. $2 u_{x x}=u_{t}$
B. $2 u_{x x}=u_{t}+9 x+7$
C. $u_{x x}=u_{t}$
D. $u_{x x}=u_{t t}$
E. $u_{x x}=u_{t}+7$

Solution: Computing $u_{x x}$ and u_{t}, we get

$$
\begin{aligned}
u_{x x} & =45 e^{-18 t} \cos (3 x)+25 e^{-50 t} \sin (5 x) \\
u_{t} & =90 e^{-18 t} \cos (3 x)+50 e^{-50 t} \sin (5 x) .
\end{aligned}
$$

Thus, we have $2 u_{x x}=u_{t}$.
3. The solution to the heat conduction problem

$$
\begin{aligned}
16 u_{x x} & =u_{t}, \quad \text { for } 0<x<5, \quad t>0, \\
u(0, t) & =u(5, t)=0, \quad \text { for } t \geq 0, \\
u(x, 0) & =7 \sin \left(\frac{\pi x}{5}\right)+10 \sin (\pi x),
\end{aligned}
$$

is given by

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} e^{-\frac{16 n^{2} \pi^{2} t}{25}} \sin \left(\frac{n \pi x}{5}\right)
$$

Find C_{1} and C_{2}.

Solution: Note that

$$
C_{n}=\frac{2}{5} \int_{0}^{5}\left(7 \sin \left(\frac{\pi x}{5}\right)+10 \sin (\pi x)\right) \sin \left(\frac{n \pi}{5} x\right) d x .
$$

By the orthogonality of sine functions, we have

$$
\begin{aligned}
\frac{2}{5} \int_{0}^{5} 7 \sin \left(\frac{\pi x}{5}\right) \sin \left(\frac{n \pi}{5} x\right) d x & =\frac{7}{5} \int_{-5}^{5} \sin \left(\frac{\pi x}{5}\right) \sin \left(\frac{n \pi}{5} x\right) d x \\
& = \begin{cases}7, & n=1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{2}{5} \int_{0}^{5} 10 \sin (\pi x) \sin \left(\frac{n \pi}{5} x\right) d x & =\frac{1}{5} \int_{-5}^{5} 10 \sin (\pi x) \sin \left(\frac{n \pi}{5} x\right) d x \\
& = \begin{cases}10, & n=5 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Therefore, we obtain

$$
C_{n}= \begin{cases}7, & n=1 \\ 10, & n=5 \\ 0, & \text { otherwise }\end{cases}
$$

In particular, $C_{1}=7$ and $C_{2}=0$.
4. Find the solution $u(x, t)$ where $0<x<L$ and $t>0$ of the diffusion equation $u_{t}=\kappa u_{x x}$ $u(0, t)=T_{1} ; \quad u(L, t)=T_{2} u(x, 0)=a$
A. $u(x, t)=\sum_{m=1}^{\infty} \frac{2 a}{m \pi}\left(1-(-1)^{m}\right) e^{-\frac{m^{2} \pi^{2}}{L^{2}} t} \sin \left(\frac{m \pi x}{L}\right)+\frac{\left(T_{2}-T_{1}\right)}{L} x+T_{1}$
B. $u(x, t)=\sum_{m=1}^{\infty} a \frac{(m \pi)^{2}}{L} \sin \left(\frac{m \pi}{L} x\right) e^{-\frac{m^{2} \pi^{2}}{L} t}+T_{2}$
C. $u(x, t)=\sum_{m=1}^{\infty} a \frac{(m \pi)^{2}}{L} \cos \left(\frac{m \pi}{L} x\right) e^{-\frac{m^{2} \pi^{2}}{L^{2}} t}+(T 2-T 1) / L x+T_{1}$
D. $u(x, t)=\sum_{m=1}^{\infty} a(-1)^{m} \sin \left(\frac{m \pi}{L} x\right) e^{-\frac{m^{2} \pi^{2}}{L^{2}} t}$
E. $u(x, t)=\sum_{m=1}^{\infty} a \sin \left(\frac{m \pi}{L} x\right) e^{-\frac{m^{2} \pi^{2}}{L^{2}} t}$

Solution:

The solution to the heat conduction problem $u_{t}=\kappa u_{x x} u(0, t)=T_{1} ; \quad u(L, t)=$ $T_{2} u(x, 0)=a$ is given by $u(x, t)=\sum_{m=1}^{\infty} b_{n} e^{-\frac{m^{2} \pi^{2}}{L^{2}} t} \sin \left(\frac{m \pi x}{L}\right)+v(x)$ where $b_{m}=$ $\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x==\frac{2}{L} \int_{0}^{L} a\left(\frac{L}{m \pi}\left(-\left.\cos \left(\frac{m \pi x}{L}\right)\right|_{0} ^{L}\right)=\frac{2 a}{m \pi}\left(1-(-1)^{m}\right)\right.$ are the sine Fourier coefficients of $f(x)=a$ and $v(x)$ is the solution to

$$
v^{\prime \prime}=0, \quad v(0)=T_{1} ; \quad v(L)=T_{2}
$$

so $v(x)=\frac{\left(T_{2}-T_{1}\right)}{L} x+T_{1}$
5. Find the steady state solution $v(x)$ where $0<x<L$ of the diffusion equation $u_{t}=\kappa u_{x x}$ $u(0, t)=B ; \quad u_{x}(L, t)=A u(x, 0)=a x^{3}$
A. $v=A x+B$
B. $v=a x^{3}$
C. $v=a x^{3}+A x+B$
D. $v=e^{-\frac{n^{2} \pi^{2}}{L} t}$
E. $v=\sum_{m=1}^{\infty} a \sin \left(\frac{m \pi}{L} x\right) e^{-\frac{n^{2} \pi^{2}}{L} t}+A x+B$

Solution: The steady state solution satisfies

$$
v^{\prime \prime}=0, \quad v(0)=A ; \quad v^{\prime}(L)=B
$$

From $v^{\prime \prime}=0$ we get that v is linear $v=a x+b$ and plugging in the initial conditions

$$
B=v(0)=b \quad A=v^{\prime}(L)=a
$$

whence $v=A x+B$
6. Write the solution $u(x, t)$ of

$$
\begin{cases}u_{t t}=a^{2} u_{x x}, & \text { for } 0<x<L, \quad t>0 \\ u(0, t)=0, & \text { for } t \geq 0 \\ u(L, t)=0, & \text { for } t \geq 0 \\ u(x, 0)=\sin \left(\frac{2 \pi x}{L}\right) & \text { for } 0 \leq x \leq L \\ u_{t}(x, 0)=0, & \text { for } 0 \leq x \leq L\end{cases}
$$

Solution: The solution is

$$
u(x, t)=\sum_{m=1}^{\infty} b_{n} \sin \left(\frac{m \pi x}{L}\right) \cos \left(\frac{m \pi t}{L}\right)
$$

with $b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} \sin \left(\frac{2 \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x$. Since the scalar product

$$
\frac{2}{L} \int_{0}^{L} \sin \left(\frac{2 \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x=0 \quad \text { for } . n \neq 2
$$

and

$$
\frac{2}{L} \int_{0}^{L} \sin \left(\frac{2 \pi x}{L}\right) \sin \left(\frac{2 \pi x}{L}\right) d x=1
$$

we have that $b_{n}=0$ for $n \neq 2$ and $b_{2}=1$ which yields

$$
u=\sin (2 \pi x / L) \cos (2 \pi t / L)
$$

