Solutions to Quiz 3

1. Consider the following two-point boundary value problem

$$
y^{\prime \prime}+16 y=0, \quad y(0)=7, \quad y(A)=B
$$

For which values of A and B, does the boundary value problem have a unique solution?
A. $A=\frac{\pi}{4}$ and $B=7$
B. $A=\frac{\pi}{4}$ and $B=-7$
C. None of these
D. $A=\frac{\pi}{8}$ and $B=5$

Solution: The general solution to $y^{\prime \prime}+16 y=0$ is $y(x)=C_{1} \cos (4 x)+C_{2} \sin (x)$. We have $y(0)=C_{1}=7$. If $A=\frac{\pi}{4}$, then $y\left(\frac{\pi}{4}\right)=-7=B$. In this case, if $B=-7$ then there are infinitely many solutions. If $B \neq-7$, then there is no solution. If $A=\frac{\pi}{8}$, then $y\left(\frac{\pi}{8}\right)=C_{2}=B$. Thus, no matter what B is, there exists a solution and it is unique.
2. If $f(x)=-4\left(x^{2}-C\right)$ and $g(x)=7$ are orthogonal on $[-1,1]$, then what is C ?
A. $\frac{1}{3}$
B. 1
C. 0
D. 2
E. $\frac{1}{2}$

Solution: Since f and g are orthogonal, we have

$$
\begin{aligned}
\int_{-1}^{1} f(x) g(x) d x & =-28 \int_{-1}^{1}\left(x^{2}-C\right) d x \\
& =-28\left[\frac{1}{3} x^{3}-C x\right]_{-1}^{1} \\
& =-28\left[\frac{2}{3}-2 C\right] \\
& =0
\end{aligned}
$$

Thus, $C=\frac{1}{3}$.
3. If f is periodic with period 12 and $f(x)=-8 x^{2}+8$ for $x \in(-6,6]$, then

$$
f(x)=p x^{2}+q x+r
$$

for $x \in(6,18]$. Find p, q, r.

Solution: Since f is periodic, we have $f(x)=f(x+12)=f(x-12)=\cdots$. Let $x \in(6,18]$ then $x-12 \in(-6,6]$. Thus,

$$
f(x)=f(x-12)=-8(x-12)^{2}+8=-8 x^{2}+192 x-1144 .
$$

4. What is the fundamental period of the function

$$
f(x)=4 \cos \left(\frac{8 \pi}{4} x\right)+3 \sin \left(\frac{96 \pi}{4} x\right)
$$

A. $T=\frac{8}{12}$
B. $T=2 \pi$
C. $T=\frac{8}{8}$
D. $T=\pi$
E. $T=8$
F. $T=2 \pi$
G. $T=\frac{12}{8}$
H. None of these

Solution: The fundamental period is the smallest of the periods of $\cos \left(\frac{8 \pi}{4} x\right)$ and $\sin \left(\frac{96 \pi}{4} x\right)$, since they are one multiple of the other and since the period of $\cos \left(\frac{n \pi}{L} x\right)$ and $\cos \left(\frac{n \pi}{L} x\right)$ is $T=\frac{2 L}{n}$. Thus he period of $\cos \left(\frac{8 \pi}{4} x\right)$ and $\sin \left(\frac{96 \pi}{4} x\right)$ are respectively $T=\frac{8}{8}=1$ and $T=\frac{8}{96}=18$. Thus the period is $T=\frac{8}{8}=1$.
5. What the solution to the boundary value problem

$$
y^{\prime \prime}+\lambda y=0 ; y(0)=0 ; y(4)=0
$$

A. $y_{n}=\sin \left(\frac{n \pi x}{4}\right)$
B. $y_{n}=\cos \left(\frac{n \pi x}{4}\right)$
C. $y_{n}=\sin \left(\frac{n \pi x}{8}\right)$
D. $y_{n}=c_{1} \sin \left(\frac{n \pi x}{4}\right)+c_{2} \cos \left(\frac{n \pi x}{4}\right)$
E. None of these

Solution: The solution to $y^{\prime \prime}+\lambda y=0 ; y(0)=0 ; y(L)=0$ is $y_{n}=\sin \left(\frac{n \pi x}{L}\right)$
6. Does the existence and uniqueness theorem apply to boundary value problems of the form

$$
y^{\prime \prime}+a y^{\prime}+b y=0, y(2)=y(4)=0
$$

with a and b real numbers?

A. No choice Yes

Solution: The existence and uniqueness theorem for ordinary differential equation applies to initial conditions which are assigned at the same point. Here they are assigned at two distinct points

