Solutions to Quiz 2

1. Suppose

$$
t^{2} y^{\prime \prime}-15 t y^{\prime}+64 y=0
$$

has a solution $y_{1}(t)=t^{8}$. If $y_{2}(t)=t^{8} v(t)$ is another solution, then $v(t)$ satisfies
A. $t^{2} v^{\prime \prime}=-t v^{\prime}+8 v$
B. $t v^{\prime \prime}=v^{\prime}$
C. $v^{\prime \prime}=-t v^{\prime}$
D. None of these
E. $t v^{\prime \prime}=-v^{\prime}$

Solution: Direct computation yields

$$
\begin{aligned}
t^{2} y_{2}^{\prime \prime}-15 t y_{2}^{\prime}+64 y_{2} & =t^{2}\left(56 t^{6} v(t)+16 t^{7} v^{\prime}(t)+t^{8} v^{\prime \prime}(t)\right)-15 t\left(8 t^{7} v(t)+t^{8} v^{\prime}(t)\right)+64 t^{8} v(t) \\
& =16 t^{9} v^{\prime}(t)+t^{10} v^{\prime \prime}(t)-15 t^{9} v^{\prime}(t) \\
& =t^{9}\left(v^{\prime}(t)+t v^{\prime \prime}(t)\right) \\
& =0
\end{aligned}
$$

2. Identify the correct form of a particular solution to

$$
y^{\prime \prime}-6 y^{\prime}=t e^{-6 t}+4 t^{4}
$$

A. $A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}+B_{0} e^{-6 t}+B_{1} t e^{-6 t}$
B. $A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}+B_{0} t e^{-6 t}+B_{1} t^{2} e^{-6 t}$
C. $A_{0} t+A_{1} t^{2}+A_{2} t^{3}+A_{3} t^{4}+A_{4} t^{5}+B_{0} e^{-6 t}+B_{1} t e^{-6 t}$
D. None of these.
E. $A_{0} t+A_{1} t^{2}+A_{2} t^{3}+A_{3} t^{4}+A_{4} t^{5}+B_{0} t e^{-6 t}+B_{1} t^{2} e^{-6 t}$

Solution: Let $L[y]=y^{\prime \prime}-6 y^{\prime}$. First, the fundamental solutions for $L[y]=0$ are $y_{1}=1$ and $y_{2}=e^{6 t}$. A particular solution to $L[y]=t e^{-6 t}$ has the form

$$
\left(B_{0}+B_{1} t\right) e^{-6 t} .
$$

For $L[y]=4 t^{4}, A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}$ won't work because A_{0} is a solution to $L[y]=0$. Thus,

$$
t\left(A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3}+A_{4} t^{4}\right)
$$

is a particular solution to $L[y]=4 t^{4}$. Therefore, $A_{0} t+A_{1} t^{2}+A_{2} t^{3}+A_{3} t^{4}+A_{4} t^{5}+$ $B_{0} e^{-6 t}+B_{1} t e^{-6 t}$ is the correct form of a particular solution.
3. If $u(t)=3 f(t)+6 g(t)$ and $v(t)=-5 f(t)+g(t)$, then the Wronskian

$$
W[u, v](t)=k W[f, g](t)
$$

for all real numbers t. What is k ?

Solution: We directly see

$$
\begin{aligned}
W[u, v](t) & =(3 f(t)+6 g(t))(-5 f(t)+g(t))^{\prime}-(3 f(t)+6 g(t))^{\prime}(-5 f(t)+g(t)) \\
& =-15 f f^{\prime}+3 f g^{\prime}-30 f^{\prime} g+6 g g^{\prime}+15 f f^{\prime}-3 f^{\prime} g+30 f g^{\prime}-6 g g^{\prime} \\
& =33\left(f g^{\prime}-f^{\prime} g\right) \\
& =33 W[f, g](t) .
\end{aligned}
$$

4. Can $y=\cos (-t)+\sin (-2 t)$ be a solution to a second order linear homogeneous differential equation

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

with a and b real numbers?

Solution: No, it cannot. A function $y=c_{1} \cos \left(\alpha_{1} t\right)+c_{2} \sin \left(\alpha_{2} t\right)$ with $\alpha_{1} \neq \alpha 2$ cannot be a solution to an equation $y^{\prime \prime}+a y^{\prime}+b y=0$. Such an equation can only have a solution containing cosine and sine if $r^{2}+a r+b=0$ has purely imaginary roots (if there is a real part to the root, it give rise to an exponential piece) $r= \pm i \alpha$ which would entail solutions of the form $y=c_{1} \cos (\alpha t)+c_{2} \sin (\alpha t)$, with the arguments of \sin and cos equal to one another
5. Consider the following ODE for $y(x)$:

$$
y^{\prime \prime}-6 y^{\prime}+234 y=0 .
$$

Which of these is a correct form for the general solution?
A. $y=e^{3 x}(A \cos (15 x)+B \sin (15 x))$
B. $y=A e^{3 x}+B e^{43 x}$
C. $y=e^{15 x}(A \cos (3 x)+B \sin (3 x))$
D. $y=A \cos (3 x)+B \sin (3 x)$
E. $y=A e^{3 x}+B \cos (15 x)+C \sin (15 x)$
F. $y=A x e^{3 x}+B e^{43 x}$
G. $y=A x+B+C e^{3 x}+D e^{15 x}$
H. None of these

Solution: The characteristic polynomial $r^{2}-6 r+234$ has roots $r=3 \pm 15 i$ and therefore the general solution is $y=e^{3 x}(A \cos (15 x)+B \sin (15 x))$.
6. Consider the following ODE for $y(x)$:

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0 .
$$

Which of these is a correct form for the general solution?
A. $y=A e^{-3 x}+B x e^{-3 x}$
B. $y=A e^{-3 x}+B e^{44 x}$
C. $y=A e^{-3 x}+B e^{14 x}+C x$
D. $y=A x+B$
E. $y=A e^{-3 x}+B e^{44 x}+C e^{14 x}$
F. $y=A x e^{-3 x}+B x e^{4 x}$
G. $y=A x+B+C e^{-3 x}+D e^{14 x}$
H. None of these

Solution: The characteristic polynomial $r^{2}+6 r+9=(r+3)^{2}$ has the repeated root $r=-3$ and therefore the general solution is $y=A e^{3 x}+B x e^{-3 x}$.

