Math 285 Lecture Note: Week 9

Daesung Kim

Lecture 22. The Method of Undetermined Coefficients (Sec 4.3)

The method of undetermined coefficients works for higher order DEs. Consider

$$
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=g(t)
$$

The general solution is the sum of the general solution to $L[y]=0$ and a particular solution to $L[y]=g(t)$. We have seen how to find the general solution to $L[y]=0$ using the characteristic equation. If $g(t)$ is a mixture of polynomials, exponential, sine or cosine functions, then a particular solution $Y(t)$ has one of the following form:
(i) If $g(t)=\left(t^{n}+\cdots\right)$, then $Y(t)=\left(A_{n} t^{n}+\cdots\right)$.
(ii) If $g(t)=\left(t^{n}+\cdots\right) e^{k t}$, then $Y(t)=\left(A_{n} t^{n}+\cdots\right) e^{k t}$.
(iii) If $g(t)=\left(t^{n}+\cdots\right) \sin (k t)$ (or $\left.\cos (k t)\right)$, then $Y(t)=\left(A_{n} t^{n}+\cdots\right) \cos (k t)+\left(B_{n} t^{n}+\cdots\right) \sin (k t)$.
(iv) Multiply $Y(t)$ by t until it does not contain a solution to the homogeneous equation.

If $g(t)$ is given by the sum of those functions, that is, $L[y]=g_{1}(t)+g_{2}(t)$, then we find particular solutions Y_{1} and Y_{2} to the equations $L[y]=g_{1}(t)$ and $L[y]=g_{2}(t)$ respectively. Then, $Y(t)=Y_{1}(t)+Y_{2}(t)$.
Example 1. Consider $L[y]=y^{(4)}+2 y^{\prime \prime \prime}-2 y^{\prime}-y=6 e^{-t}$. First, we solve the corresponding homogeneous equation. The characteristic equation is

$$
\lambda^{4}+2 \lambda^{3}-2 \lambda-1=(\lambda+1)^{3}(\lambda-1)=0
$$

Thus, $\left\{e^{-t}, t e^{-t}, t^{2} e^{-t}, e^{t}\right\}$ is a fundamental set of solutions and the general solution is

$$
y_{c}(t)=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}+C_{4} e^{t}
$$

Since $g(t)=6 e^{-t}$ is a solution to $L[y]=0$, the candidate for $Y(t)$ is $A t e^{-t}$. This is, however, again a solution. We repeat this until it is not a solution. Thus, $Y(t)=A t^{3} e^{-t}$. We need to compute $L[Y]$ to determine A. For simplicity, let $f(t)=A t^{3}$, then

$$
\begin{aligned}
Y(t) & =f e^{-t} \\
Y^{\prime}(t) & =\left(f^{\prime}-f\right) e^{-t} \\
Y^{\prime \prime}(t) & =\left(f^{\prime \prime}-2 f^{\prime}+f\right) e^{-t} \\
Y^{\prime \prime \prime}(t) & =\left(f^{\prime \prime \prime}-3 f^{\prime \prime}+3 f^{\prime}-f\right) e^{-t} \\
Y^{\prime \prime \prime \prime}(t) & =\left(f^{\prime \prime \prime \prime}-4 f^{\prime \prime \prime}+6 f^{\prime \prime}-4 f^{\prime}+f\right) e^{-t}
\end{aligned}
$$

So, we get $L[Y]=\left(f^{(4)}-2 f^{(3)}\right) e^{-t}=-12 A e^{-t}=6 e^{-t}$ and so $A=-\frac{1}{2}$. Therefore, the general solution is

$$
y(t)=y_{c}(t)+Y(t)=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}+C_{4} e^{t}-\frac{1}{2} t^{3} e^{-t}
$$

Remark 2. In the previous example, one can see that if $y(t)=f e^{-t}$ is a solution to $L[y]=0$, then f satisfies $f^{(4)}-2 f^{(3)}=0$. It is straightforward to see that the general solution to $f^{(4)}-2 f^{(3)}=0$ is

$$
f(t)=C_{1}+C_{2} t+C_{3} t^{2}+C_{4} e^{2 t}
$$

Note that $y(t)=f(t) e^{-t}=C_{1} e^{-t}+C_{2} t e^{-t}+C_{3} t^{2} e^{-t}+C_{4} e^{t}$ is indeed the general solution to $L[y]=$ $y^{(4)}+2 y^{\prime \prime \prime}-2 y^{\prime}-y=0$. Can we find $f^{(4)}-2 f^{(3)}=0$ without computing derivatives? Indeed, the characteristic equations of the new DE has a close relation with that of the original equation:

$$
\lambda^{4}+2 \lambda^{3}-2 \lambda-1=(\lambda+1)^{4}-2(\lambda+1)^{3}
$$

Example 3. Consider $L[y]=y^{\prime \prime \prime}+y^{\prime}=t e^{-t}+\cos t$. The general solution to $L[y]=0$ is

$$
y_{c}(t)=C_{1}+C_{2} \cos t+C_{3} \sin t .
$$

Since $g(t)=t e^{-t}+\cos t$, we find particular solutions to $L[y]=t e^{-t}$ and $L[y]=\cos t$ separately. A particular solution to $L[y]=t e^{-t}$ is $Y_{1}(t)=(A t+B) e^{-t}$. Since

$$
L\left[Y_{1}\right]=(-2 A t+(4 A-2 B)) e^{-t}=t e^{-t}
$$

$A=-1 / 2$ and $B=1$. Thus, $Y_{1}(t)=\left(-\frac{1}{2} t+1\right) e^{-t}$. For $L[y]=\cos t, Y_{2}(t)=A t \cos t+B t \sin t$ because $\cos t$ is a solution to $L[y]=0$. Then,

$$
L\left[Y_{2}\right]=-2 A \cos t-2 B \sin t=\cos t
$$

implies that $A=-\frac{1}{2}$ and $B=0$. Therefore,

$$
y(t)=y_{c}(t)+Y_{1}(t)+Y_{2}(t)=C_{1}+C_{2} \cos t+C_{3} \sin t+\left(-\frac{1}{2} t+1\right) e^{-t}-\frac{1}{2} t \cos t
$$

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

