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Lecture 19. Forced Vibrations with damping (Sec 3.8)

We study forced vibrations with damping effect. Suppose there is an external force given by Fp cos(wt), then
we have

mu' (t) + yu' (t) + ku(t) = Fy cos(wt)
where v # 0 and Fj > 0. Then the general solution is
u(t) = Cry1(t) + Caya(t) + Acos(wt) + Bsin(wt)

where {y1,y2} is a fundamental set of solutions to the homogeneous equation mu” (t) + vyu'(t) + ku(t) = 0.
Let u.(t) = Cry1(t) + Cayz2(t) and U(t) = Acos(wt) + Bsin(wt). Note that u.(t) is the general solution to
the homogeneous equation and U(t) is a particular solution to the nonhomogeneous equation.
Recall that C7, Cs are determined by the initial conditions and A, B are determined by the equation. We
have seen that u.(t) has three different forms depending on the sign of D = 7247%7"’“:
e~z (CreVPl 4 Coe VDY), if D >0o0r >4,
uc(t) = ¢ e 2t (Cy + Oat), if D=0orI' =4,
e~ (Crcosut + Cysinput), if D>0orl <4,
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where p = +—D = \/% — 4722 is the quasi frequency and I' = %—1 Note that

kE [~ 5 (T
D=—|—-4)= ——1
4m<mk ) w0<4 >

In particular, u.(t) — 0 as t — oo. For this reason, u.(t) is called the transient solution. Since w.(t)
dies out as ¢ increases, the solution u(t) tends to be close to U(t) as ¢t goes. In this sense, U(t) is called the
steady state solution or the forced response.

Let’s find A and B. By replacing u(t) with U(t) in the equation, we get

mU" (t) +~U'(t) + kU (t) = —mw? (A cos(wt) + Bsin(wt)) + yw(—Asin(wt) + B cos(wt)) + k(A cos(wt) + Bsin(wt))
= (—mw?A + YwB + kA) cos(wt) + (—mw?B — ywA + kB) sin(wt)

= Fy cos(wt),
which yields
(k — mw*)A + ywB = Fy,
—ywA + (k —mw*)B = 0.
Thus,
s (k — mw?) - m(wd — w?) 7
(k — mw?)? + 72w? m2(wZ — w?)? +12w?
w w
B= (k— me)2 T 202 Fo = m2(wZ — 3)2)2 T 202 Fo,



where wg = /k/m. To simplify this, we introduce
Oz:m(wg—w2)7 B = yw, A =+/a?+ (2,

then
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Fp.
As before, U(t) can be written as

U(t) = Acoswt + Bsinwt = R cos(wt — J)
where R = /A2 + B2 = [};/A and § € [0, 27) satisfying

5= A« s — B B
cosd = 5 =+, sind = = ~-
Let’s focus on the behavior of R according to w. Indeed, it suffices to consider A. Note that
A2 = o? 4 2

= m2(wd — w?)? +12w?
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where I' = % One can see that R — Fy/k asw — 0 and R — 0 as w — oco. If 0 < I' < 2, then R has its
maximum (or A has its minimum) when

In this case, the maximum of R is
2F,

kyT(4—T)

In particular, if v is small, then T" is also small. Thus, the amplitude of the steady state solution R attains
its maximum if w is close to the natural frequency wp. If I' > 2, then R has its maximum (or A has its
minimum) when w = 0. In this case, the maximum of R is Fy/k.

Rmax =

Example 1. We consider the case where v is small. Let v’ +0.2u"4+9.01u = 5 cos(wt). The general solution
is

u(t) = e %10y cos(3t) + Oy sin(3t)) + A cos(wt) + Bsin(wt).
Ifw=2and C; =Cy =1, then A =0.08.., B=0.9..., and

u




Ifw=3and C; =Cy =1, then A =8.4..., B=0.14..., and

u

Ifw=4and C; =Cs =1, then A =0.08..., B=—0.7..., and

u

Lecture 20. General Theory of Higher Order Linear Equations
(Sec 4.1)

An n-th order linear differential equation is of the form

dny dn—ly
e TP g

et () 4 ey = gl0)

We assume that p1(¢), -+ ,pn(t), g(t) are continuous on I = («, 3). Let

dn dn—l d
Lyl = Z2 +pi ) T+ pama (05

= nt ;
Jin +pa(t)y

then we simply write L{y] = g(¢).

Theorem 2 (Existence and Uniqueness). If p1(t), -+ ,pn(t), g(t) are continuous on I = (o, 3), then there
erists a unique solution to the equation

dny dnfly

Ly = —~ +p1(t)W

d
= o ot paea () Pty = g(0)

dt

on I.

Definition 3. The Wronskian of y1, - - , ¥y, is defined by

Y1 Y2 T Yn

7 Yo o Un

Wiyr, -+ ,yal(t) = det : : - :
y§n—1) yén—l) L. yrgn—l)



Theorem 4. Suppose py(t), - ,pa(t),g(t) are continuous on I = (a, B) and y1,- - ,yn are solutions to

dny dn—ly dy
Lyl = — t)———+ - n—1(t)— n(t)y = 0.
Wyl = T o1 =t o+ paa () o+ pal(t)y
If Wiy, - ,ynl(to) # 0 for some ty € I, then every solution to L{y] =0 can be written as

Ciy1 + -+ Cryn.

In this case {y1, -+ ,yn} is called a fundamental set of solutions and y(t) = Ciy1 + -+ + Cpyn is called the
general solution.

Definition 5. Let fi,---, f, be functions on I. We say fi,--- , f, are linearly dependent on I if there exist
constants ki, - -- , k, not all zero such that

kifi(t) +- -+ kafu(t) =0
for all t € I. If not, we say fi,---, fn are linearly independent on [
Example 6. Let f; =2t — 3, fo =2 + 1, and f3 = 2t?> — t. Consider

kifi + kofo + ksfs = k?l(2t — 3) + kg(tz + 1) + k‘3(2t2 — t)
= (kg + 2k3)t* 4+ (2k1 — k3)t + (ko — 3k1).

Therefore,
ko +2k3 =10
2k — k3 =0
ko —3k1 =0

(why?). Thus, k1 = ko = k3 = 0, which means that fi, f2, f3 are linearly independent.

Theorem 7. Let y1,--- ,yn be solutions to
dny dn—ly dy
Lyl =22 e Y o O 4 pa(ty = 0.
] = o T 21() ey o paea () + pal(t)y
A set {y1,- -+ ,yn} is a fundamental set of solutions if and only if {y1,--- ,yn} is linearly independent on I.

Example 8. Consider 4" + ¢y’ = 0. Let v = ¢/, then the given equation is v/ +v = 0. Thus, v = ¢’ =
Acost+ Bsint and so

y = Cjcost+ Cysint 4+ Cs.

It is natural to guess that {1, cost,sint} is a fundamental set of solutions. There are two ways to verify that.
One can directly show that the Wronskian is not zero. That is,

1 cost sint
Wl,cost,sint](t) =det [0 —sint cost
0 —cost —sint

— dot —sint co§t
—cost —sint
=1.

The other way is to check whether {1,cost,sint} is linearly independent. Suppose there exist constants
k1, ko, k3 such that

k1 + kocost + kgsint =0

for all ¢t. Taking derivative, we have —kysint + k3 cost = 0. Putting ¢ = 0, we get k3 = 0. Then, it follows
that k1 = k3 = 0, as desired.



Lecture 21. Homogeneous Equations with Constant Coefficients
(Sec 4.2)

Consider the homogeneous equation with constant coefficients

dny dn—ly dy
Lyl = aq—2 - L ta, 12 +ay=0
Wl = a0 + @ gy oo angy +any
where ag, - - - ,a, are real and ag # 0. If y(t) = e is a solution, then
Z(A):aOAn+"'+a1)\+aO:07

which is called the characteristic equation. It is well-known that Z(\) has n complex roots (including
repeated roots) and

Z(\) = ag(A —11) - (A — ).

If 7, -+ ,7r, are n distinct real roots, then {e™! ... e™!} is a fundamental set of solutions and the
general solution is

y(t) = Cre™t + -+ Cre™t.
Example 9. Consider y"”’ + 2y” — 3’ — 2y = 0, then the characteristic equation is
ZOA) =N +22 = A -2
=XA+2)-(\+2)
=\ -1)(A+2)
=A=-1DA+1H(A+2).

Thus, the equation has three distinct real roots A = 1,—1,—2 and {e!,e~! 72!} is a fundamental set of
solutions. The general solution is

y(t) = C’let + 02€7t + 0367%.
Suppose Z(\) has complex roots, say A = r + iu. Since the coefficients are real, the conjugate r — ip is

also a root. Thus, this complex roots correspond to

t

e"" cos pt, et sin put.

Example 10. Consider "' —y"” + vy’ — y = 0, then the characteristic equation is
ZA) =X = A2+ A -1
=XA-1D)+0N-1)
=N +DA-1).

Thus, the equation has one real root and two complex roots A = 1,4, —i and {e’, cost,sint} is a fundamental
set of solutions. The general solution is

y(t) = Cre’ + Cycost + Cysint.

Suppose Z(\) has repeated roots. To be specific, suppose Z(A) has a factor (A — r)® where s is the
maximum power. Then, s is called the multiplicity of the root r. In this case, the corresponding solutions
are

ert teTt . ts—lert.
If a complex root, say r -+ iu, has multiplicity s, then the conjugate r — iy has the same multiplicity. In this

case the corresponding solutions are

tsfl ert

e’ cos ut, e’ sin pt, te™ cos ut, te" sin pt, e t57 e cos put, sin put.



Example 11. Consider y(®) + 2y 4+ ¢ = 0, then the characteristic equation is
Z(A) = A0 4201 4 )2
=N\ +1)%

Thus, the equation has roots A = 0,4, —¢ with multiplicity 2. Thus, {1,¢,cost,sint, tcost,tsint} is a funda-
mental set of solutions and the general solution is

y(t) = C1 + Cot + C3cost + Cysint + Cst cost + Cgtsint.
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