Math 285 Lecture Note: Week 8

Daesung Kim

Lecture 19. Forced Vibrations with damping (Sec 3.8)

We study forced vibrations with damping effect. Suppose there is an external force given by $F_{0} \cos (\omega t)$, then we have

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{0} \cos (\omega t)
$$

where $\gamma \neq 0$ and $F_{0}>0$. Then the general solution is

$$
u(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)+A \cos (\omega t)+B \sin (\omega t)
$$

where $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions to the homogeneous equation $m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0$. Let $u_{c}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ and $U(t)=A \cos (\omega t)+B \sin (\omega t)$. Note that $u_{c}(t)$ is the general solution to the homogeneous equation and $U(t)$ is a particular solution to the nonhomogeneous equation.

Recall that C_{1}, C_{2} are determined by the initial conditions and A, B are determined by the equation. We have seen that $u_{c}(t)$ has three different forms depending on the sign of $D=\frac{\gamma^{2}-4 m k}{4 m^{2}}$:

$$
u_{c}(t)= \begin{cases}e^{-\frac{\gamma}{2 m} t}\left(C_{1} e^{\sqrt{D} t}+C_{2} e^{-\sqrt{D} t}\right), & \text { if } D>0 \text { or } \Gamma>4, \\ e^{-\frac{2}{2 m} t}\left(C_{1}+C_{2} t\right), & \text { if } D=0 \text { or } \Gamma=4, \\ e^{-\frac{\gamma}{2 m} t}\left(C_{1} \cos \mu t+C_{2} \sin \mu t\right), & \text { if } D>0 \text { or } \Gamma<4,\end{cases}
$$

where $\mu=\sqrt{-D}=\sqrt{\frac{k}{m}-\frac{\gamma^{2}}{4 m^{2}}}$ is the quasi frequency and $\Gamma=\frac{\gamma^{2}}{m k}$. Note that

$$
D=\frac{k}{4 m}\left(\frac{\gamma^{2}}{m k}-4\right)=\omega_{0}^{2}\left(\frac{\Gamma}{4}-1\right)
$$

In particular, $u_{c}(t) \rightarrow 0$ as $t \rightarrow \infty$. For this reason, $u_{c}(t)$ is called the transient solution. Since $u_{c}(t)$ dies out as t increases, the solution $u(t)$ tends to be close to $U(t)$ as t goes. In this sense, $U(t)$ is called the steady state solution or the forced response.

Let's find A and B. By replacing $u(t)$ with $U(t)$ in the equation, we get

$$
\begin{aligned}
m U^{\prime \prime}(t)+\gamma U^{\prime}(t)+k U(t) & =-m \omega^{2}(A \cos (\omega t)+B \sin (\omega t))+\gamma \omega(-A \sin (\omega t)+B \cos (\omega t))+k(A \cos (\omega t)+B \sin (\omega t)) \\
& =\left(-m \omega^{2} A+\gamma \omega B+k A\right) \cos (\omega t)+\left(-m \omega^{2} B-\gamma \omega A+k B\right) \sin (\omega t) \\
& =F_{0} \cos (\omega t),
\end{aligned}
$$

which yields

$$
\begin{aligned}
\left(k-m \omega^{2}\right) A+\gamma \omega B & =F_{0}, \\
-\gamma \omega A+\left(k-m \omega^{2}\right) B & =0 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& A=\frac{\left(k-m \omega^{2}\right)}{\left(k-m \omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} F_{0}=\frac{m\left(\omega_{0}^{2}-\omega^{2}\right)}{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} F_{0}, \\
& B=\frac{\gamma \omega}{\left(k-m \omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} F_{0}=\frac{\gamma \omega}{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} F_{0},
\end{aligned}
$$

where $\omega_{0}=\sqrt{k / m}$. To simplify this, we introduce

$$
\alpha=m\left(\omega_{0}^{2}-\omega^{2}\right), \quad \beta=\gamma \omega, \quad \Delta=\sqrt{\alpha^{2}+\beta^{2}}
$$

then

$$
A=\frac{\alpha}{\Delta^{2}} F_{0}, \quad B=\frac{\beta}{\Delta^{2}} F_{0}
$$

As before, $U(t)$ can be written as

$$
U(t)=A \cos \omega t+B \sin \omega t=R \cos (\omega t-\delta)
$$

where $R=\sqrt{A^{2}+B^{2}}=F_{0} / \Delta$ and $\delta \in[0,2 \pi)$ satisfying

$$
\cos \delta=\frac{A}{R}=\frac{\alpha}{\Delta}, \quad \sin \delta=\frac{B}{R}=\frac{\beta}{\Delta} .
$$

Let's focus on the behavior of R according to ω. Indeed, it suffices to consider Δ. Note that

$$
\begin{aligned}
\Delta^{2} & =\alpha^{2}+\beta^{2} \\
& =m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2} \\
& =m^{2} \omega_{0}^{4}\left[\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right)^{2}+\frac{\gamma^{2}}{m^{2} \omega_{0}^{2}} \frac{\omega^{2}}{\omega_{0}^{2}}\right] \\
& =k^{2}\left[\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right)^{2}+\Gamma \frac{\omega^{2}}{\omega_{0}^{2}}\right] \\
& =k^{2}\left[\left(\frac{\omega^{2}}{\omega_{0}^{2}}-\left(1-\frac{\Gamma}{2}\right)\right)^{2}+\frac{1}{4} \Gamma(4-\Gamma)\right]
\end{aligned}
$$

where $\Gamma=\frac{\gamma^{2}}{m k}$. One can see that $R \rightarrow F_{0} / k$ as $\omega \rightarrow 0$ and $R \rightarrow 0$ as $\omega \rightarrow \infty$. If $0<\Gamma<2$, then R has its maximum (or Δ has its minimum) when

$$
\omega^{2}=\omega_{0}^{2}\left(1-\frac{\Gamma}{2}\right)
$$

In this case, the maximum of R is

$$
R_{\max }=\frac{2 F_{0}}{k \sqrt{\Gamma(4-\Gamma)}}
$$

In particular, if γ is small, then Γ is also small. Thus, the amplitude of the steady state solution R attains its maximum if ω is close to the natural frequency ω_{0}. If $\Gamma \geq 2$, then R has its maximum (or Δ has its minimum) when $\omega=0$. In this case, the maximum of R is F_{0} / k.
Example 1. We consider the case where γ is small. Let $u^{\prime \prime}+0.2 u^{\prime}+9.01 u=5 \cos (\omega t)$. The general solution is

$$
u(t)=e^{-0.1 t}\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right)+A \cos (\omega t)+B \sin (\omega t)
$$

If $\omega=2$ and $C_{1}=C_{2}=1$, then $A=0.08 \ldots, B=0.9 \ldots$, and

If $\omega=3$ and $C_{1}=C_{2}=1$, then $A=8.4 \ldots, B=0.14 \ldots$, and

If $\omega=4$ and $C_{1}=C_{2}=1$, then $A=0.08 \ldots, B=-0.7 \ldots$, and

Lecture 20. General Theory of Higher Order Linear Equations

 (Sec 4.1)An n-th order linear differential equation is of the form

$$
\frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+p_{n-1}(t) \frac{d y}{d t}+p_{n}(t) y=g(t)
$$

We assume that $p_{1}(t), \cdots, p_{n}(t), g(t)$ are continuous on $I=(\alpha, \beta)$. Let

$$
L[y]=\frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+p_{n-1}(t) \frac{d y}{d t}+p_{n}(t) y
$$

then we simply write $L[y]=g(t)$.
Theorem 2 (Existence and Uniqueness). If $p_{1}(t), \cdots, p_{n}(t), g(t)$ are continuous on $I=(\alpha, \beta)$, then there exists a unique solution to the equation

$$
L[y]=\frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+p_{n-1}(t) \frac{d y}{d t}+p_{n}(t) y=g(t)
$$

on I.
Definition 3. The Wronskian of y_{1}, \cdots, y_{n} is defined by

$$
W\left[y_{1}, \cdots, y_{n}\right](t)=\operatorname{det}\left(\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right)
$$

Theorem 4. Suppose $p_{1}(t), \cdots, p_{n}(t), g(t)$ are continuous on $I=(\alpha, \beta)$ and y_{1}, \cdots, y_{n} are solutions to

$$
L[y]=\frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+p_{n-1}(t) \frac{d y}{d t}+p_{n}(t) y=0
$$

If $W\left[y_{1}, \cdots, y_{n}\right]\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$, then every solution to $L[y]=0$ can be written as

$$
C_{1} y_{1}+\cdots+C_{n} y_{n}
$$

In this case $\left\{y_{1}, \cdots, y_{n}\right\}$ is called a fundamental set of solutions and $y(t)=C_{1} y_{1}+\cdots+C_{n} y_{n}$ is called the general solution.

Definition 5. Let f_{1}, \cdots, f_{n} be functions on I. We say f_{1}, \cdots, f_{n} are linearly dependent on I if there exist constants k_{1}, \cdots, k_{n} not all zero such that

$$
k_{1} f_{1}(t)+\cdots+k_{n} f_{n}(t)=0
$$

for all $t \in I$. If not, we say f_{1}, \cdots, f_{n} are linearly independent on I
Example 6. Let $f_{1}=2 t-3, f_{2}=t^{2}+1$, and $f_{3}=2 t^{2}-t$. Consider

$$
\begin{aligned}
k_{1} f_{1}+k_{2} f_{2}+k_{3} f_{3} & =k_{1}(2 t-3)+k_{2}\left(t^{2}+1\right)+k_{3}\left(2 t^{2}-t\right) \\
& =\left(k_{2}+2 k_{3}\right) t^{2}+\left(2 k_{1}-k_{3}\right) t+\left(k_{2}-3 k_{1}\right)
\end{aligned}
$$

Therefore,

$$
\left\{\begin{array}{l}
k_{2}+2 k_{3}=0 \\
2 k_{1}-k_{3}=0 \\
k_{2}-3 k_{1}=0
\end{array}\right.
$$

(why?). Thus, $k_{1}=k_{2}=k_{3}=0$, which means that f_{1}, f_{2}, f_{3} are linearly independent.
Theorem 7. Let y_{1}, \cdots, y_{n} be solutions to

$$
L[y]=\frac{d^{n} y}{d t^{n}}+p_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots+p_{n-1}(t) \frac{d y}{d t}+p_{n}(t) y=0
$$

A set $\left\{y_{1}, \cdots, y_{n}\right\}$ is a fundamental set of solutions if and only if $\left\{y_{1}, \cdots, y_{n}\right\}$ is linearly independent on I.
Example 8. Consider $y^{\prime \prime \prime}+y^{\prime}=0$. Let $v=y^{\prime}$, then the given equation is $v^{\prime \prime}+v=0$. Thus, $v=y^{\prime}=$ $A \cos t+B \sin t$ and so

$$
y=C_{1} \cos t+C_{2} \sin t+C_{3}
$$

It is natural to guess that $\{1, \cos t, \sin t\}$ is a fundamental set of solutions. There are two ways to verify that. One can directly show that the Wronskian is not zero. That is,

$$
\begin{aligned}
W[1, \cos t, \sin t](t) & =\operatorname{det}\left(\begin{array}{ccc}
1 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
0 & -\cos t & -\sin t
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
-\sin t & \cos t \\
-\cos t & -\sin t
\end{array}\right) \\
& =1
\end{aligned}
$$

The other way is to check whether $\{1, \cos t, \sin t\}$ is linearly independent. Suppose there exist constants k_{1}, k_{2}, k_{3} such that

$$
k_{1}+k_{2} \cos t+k_{3} \sin t=0
$$

for all t. Taking derivative, we have $-k_{2} \sin t+k_{3} \cos t=0$. Putting $t=0$, we get $k_{3}=0$. Then, it follows that $k_{1}=k_{3}=0$, as desired.

Lecture 21. Homogeneous Equations with Constant Coefficients (Sec 4.2)

Consider the homogeneous equation with constant coefficients

$$
L[y]=a_{0} \frac{d^{n} y}{d t^{n}}+a_{1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{n-1} \frac{d y}{d t}+a_{n} y=0
$$

where a_{0}, \cdots, a_{n} are real and $a_{0} \neq 0$. If $y(t)=e^{\lambda t}$ is a solution, then

$$
Z(\lambda)=a_{0} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}=0,
$$

which is called the characteristic equation. It is well-known that $Z(\lambda)$ has n complex roots (including repeated roots) and

$$
Z(\lambda)=a_{0}\left(\lambda-r_{1}\right) \cdots\left(\lambda-r_{n}\right) .
$$

If r_{1}, \cdots, r_{n} are n distinct real roots, then $\left\{e^{r_{1} t}, \cdots, e^{r_{n} t}\right\}$ is a fundamental set of solutions and the general solution is

$$
y(t)=C_{1} e^{r_{1} t}+\cdots+C_{n} e^{r_{n} t} .
$$

Example 9. Consider $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$, then the characteristic equation is

$$
\begin{aligned}
Z(\lambda) & =\lambda^{3}+2 \lambda^{2}-\lambda-2 \\
& =\lambda^{2}(\lambda+2)-(\lambda+2) \\
& =\left(\lambda^{2}-1\right)(\lambda+2) \\
& =(\lambda-1)(\lambda+1)(\lambda+2) .
\end{aligned}
$$

Thus, the equation has three distinct real roots $\lambda=1,-1,-2$ and $\left\{e^{t}, e^{-t}, e^{-2 t}\right\}$ is a fundamental set of solutions. The general solution is

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}+C_{3} e^{-2 t} .
$$

Suppose $Z(\lambda)$ has complex roots, say $\lambda=r+i \mu$. Since the coefficients are real, the conjugate $r-i \mu$ is also a root. Thus, this complex roots correspond to

$$
e^{r t} \cos \mu t, \quad e^{r t} \sin \mu t .
$$

Example 10. Consider $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$, then the characteristic equation is

$$
\begin{aligned}
Z(\lambda) & =\lambda^{3}-\lambda^{2}+\lambda-1 \\
& =\lambda^{2}(\lambda-1)+(\lambda-1) \\
& =\left(\lambda^{2}+1\right)(\lambda-1) .
\end{aligned}
$$

Thus, the equation has one real root and two complex roots $\lambda=1, i,-i$ and $\left\{e^{t}, \cos t, \sin t\right\}$ is a fundamental set of solutions. The general solution is

$$
y(t)=C_{1} e^{t}+C_{2} \cos t+C_{3} \sin t
$$

Suppose $Z(\lambda)$ has repeated roots. To be specific, suppose $Z(\lambda)$ has a factor $(\lambda-r)^{s}$ where s is the maximum power. Then, s is called the multiplicity of the root r. In this case, the corresponding solutions are

$$
e^{r t}, t e^{r t}, \cdots, t^{s-1} e^{r t} .
$$

If a complex root, say $r+i \mu$, has multiplicity s, then the conjugate $r-i \mu$ has the same multiplicity. In this case the corresponding solutions are

$$
e^{r t} \cos \mu t, \quad e^{r t} \sin \mu t, \quad t e^{r t} \cos \mu t, \quad t e^{r t} \sin \mu t, \quad \cdots \quad t^{s-1} e^{r t} \cos \mu t, \quad t^{s-1} e^{r t} \sin \mu t .
$$

Example 11. Consider $y^{(6)}+2 y^{(4)}+y^{\prime \prime}=0$, then the characteristic equation is

$$
\begin{aligned}
Z(\lambda) & =\lambda^{6}+2 \lambda^{4}+\lambda^{2} \\
& =\lambda^{2}\left(\lambda^{2}+1\right)^{2}
\end{aligned}
$$

Thus, the equation has roots $\lambda=0, i,-i$ with multiplicity 2 . Thus, $\{1, t, \cos t, \sin t, t \cos t, t \sin t\}$ is a fundamental set of solutions and the general solution is

$$
y(t)=C_{1}+C_{2} t+C_{3} \cos t+C_{4} \sin t+C_{5} t \cos t+C_{6} t \sin t
$$

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

