
Math 285 Lecture Note: Week 7

Daesung Kim

Lecture 16. Mechanical and Electrical Vibrations, Part 1 (Sec 3.7)

As an application, we study a spring–mass system. Consider a mass m hanging at rest on the end of a
vertical spring. Hooke’s law says that the spring force is proportional to the elongation L of the spring. Let
k > 0 be the spring constant. Thus, in the equilibrium status, the gravity is the same as the spring force,
that is mg = kL. Let u(t) be the displacement of the mass from its equilibrium. Then the total force F is

F = mu′′(t) = mg − k(L+ u(t)) = −ku(t).

The characteristic equation is mλ2 + k = 0. Thus, the general solution is

u(t) = A cos(ω0t) +B sin(ω0t)

where ω0 =
√
k/m is the positive root of the characteristic equation and A,B are the constants determined

by the initial conditions. To visualized the solution, it is good to reformulate it as

u(t) = A cos(ω0t) +B sin(ω0t)

=
√
A2 +B2

(
A√

A2 +B2
cos(ω0t) +

B√
A2 +B2

sin(ω0t)

)
= R (cos δ cos(ω0t) + sin δ sin(ω0t))

= R cos(ω0t− δ)

where R =
√
A2 +B2 and δ ∈ [0, 2π) is the unique angle satisfying

cos δ =
A√

A2 +B2
, sin δ =

B√
A2 +B2

.

We call ω0 the natural frequency, R the amplitude, and δ the phase. The period is T = 2π/ω0

Example 1. Let m = 2 and k = 6. Suppose the initial conditions are u(0) = 1 and u′(0) = −3. Then, the
natural frequency is ω0 =

√
k/m =

√
3, the period is T = 2π/

√
3, and the general solution is

u(t) = A cos(
√

3t) +B sin(
√

3t).

By the initial condition, we have

u(0) = A = 1, u′(0) =
√

3B = −3,

which yields u(t) = cos(
√

3t)−
√

3 sin(
√

3t). The amplitude is R =
√

1 + 3 = 2 and the phase is δ = 5π/3.
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Lecture 17. Mechanical and Electrical Vibrations, Part 2 (Sec 3.7)

We include the affect of the resistive (or damping) force, which is proportional to the speed of the mass and
its direction is the opposite of the movement of the mass. Thus, the total force is

F = mu′′(t) = −ku(t)− γu′(t)

where γ > 0 is called the damping constant. The characteristic equation is

mλ2 + γλ+ k = 0.

By the quadratic formula, the roots for the equation is

λ = − γ

2m
±
√
γ2 − 4mk

4m2
= − γ

2m
±
√
D

where D = γ2−4mk
4m2 .

If D > 0, then the characteristic equation has two distinct real roots r1, r2 = − γ
2m ±

√
D < 0 and the

general solution is

u(t) = Aer1t +Ber2t = e−
γ

2m t(Ae
√
Dt +Be−

√
Dt).

This motion is called overdamped.
If D = 0, then the characteristic equation has repeated roots − γ

2m and the general solution is

u(t) = e−
γ

2m t(At+B).

This motion is called critically damped.
If D < 0, then the characteristic equation has complex roots r1 = − γ

2m + iµ and r2 = − γ
2m − iµ where

µ =
√
−D =

√
k

m
− γ2

4m2

and the general solution is

u(t) = e−
γ

2m t(A cosµt+B sinµt).

We call µ the quasi frequency and Td = 2π/µ the quasi period. This motion is called underdamped.

Example 2. Consider the spring–mass system with damping

mu′′ + γu′ + ku = 0

with m = 1, γ = 5, k = 4 and the initial conditions u(0) = 1 and u′(0) = 1. Then, the general solution is

u(t) = Ae−t +Be−4t.

By the initial condition, we have

u(t) =
5

3
e−t − 2

3
e−4t.
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Example 3. Consider the spring–mass system with damping

mu′′ + γu′ + ku = 0

with m = 1, γ = 4, k = 4 and the initial conditions u(0) = 1 and u′(0) = 1. Then, the general solution is

u(t) = (At+B)e−2t.

By the initial condition, we have

u(t) = (3t+ 1)e−2t.
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Example 4. Consider the spring–mass system with damping

mu′′ + γu′ + ku = 0

with m = 1, γ = 2, k = 4 and the initial conditions u(0) = 1 and u′(0) = 1. Then, the general solution is

u(t) = e−t(A cos
√

3t+B sin
√

3t).

By the initial condition, we have

u(t) = e−t(cos
√

3t+
2√
3

sin
√

3t).

t

u

3



Lecture 18. Forced Vibrations without damping (Sec 3.8)

In this section, we investigate the spring–mass system with external forces.
We start with forced vibrations without damping effect. Suppose there is an external force given by

F0 cos(ωt), then we have

mu′′(t) + ku(t) = F0 cos(ωt)

where F0 is a constant. Suppose ω 6= ω0. The general solution is

u(t) = A cosω0t+B sinω0t+
F0

m(ω2
0 − ω2)

cosωt.

If u(0) = u′(0) = 0, then

u(t) =
F0

m(ω2
0 − ω2)

(cosωt− cosω0t)

=
2F0

m(ω2
0 − ω2)

sin

(
(ω0 + ω)

2
t

)
sin

(
(ω0 − ω)

2
t

)
.

Example 5. Consider the case where m = 1, k = 4, F0 = 3, and ω = 1.8. Then,

u′′(t) + 4u(t) = 3 cos(1.8t).

Then ω0 = 2 and the solution with initial conditions u(0) = u′(0) = 0 is

u(t) =
3

(4− 3.24)
(cos 1.8t− cos 2t)

=
6

0.76
sin (1.9t) sin (0.1t)
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u

What if ω0 = ω? In this case, the general solution is

u(t) = A cosω0t+B sinω0t+
F0

2mω0
t sinω0t.

Example 6. Consider

u′′ + u = 3 cos t, u(0) = u′(0) = 0.

Then,

u(t) = 1.5t sin t.
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