
Math 285 Lecture Note: Week 6

Daesung Kim

Lecture 13. Repeated Roots; Reduction of Order (Sec 3.4)

Consider y′′+6y′+9y = 0, then the characteristic equation is r2 +6r+9 = 0. Thus, it has the repeated root
r = −3 and so y1(t) = e−3t is a solution. In this case, the characteristic equation only gives one solution,
which is not enough for finding the general solution.

To find the general solution, we need to find another solution which is different enough from y1(t). Since
y1(t) is a solution, so is cy1(t) for any constant c. But the problem is that this solution is not different
enough from y1(t). That is, W [y1, cy1](t) = 0 for all t. The idea is to replace the constant c with a function
v(t). Let y(t) = v(t)y1(t) = v(t)e−3t. If it is a solution, then

y′′ + 6y′ + 9y = (v(t)e−3t)′′ + 6(v(t)e−3t)′ + 9(v(t)e−3t)

= (v′′(t)e−3t − 6v′(t)e−3t + 9v(t)e−3t) + 6(v′(t)e−3t − 3v(t)e−3t) + 9(v(t)e−3t)

= e−3tv′′(t)

= 0.

Thus, v′′ = 0 and so v(t) = C1 + C2t. Therefore,

y(t) = C1e
−3t + C2te

−3t.

Let u = e−3t and v = te−3t, then the Wronskian is

W [u, v](t) = uv′ − u′v
= e−3t(e−3t − 3te−3t) + 3te−6t

= e−6t.

Thus, {u, v} is a fundamental set of solutions. In general, if the characteristic equation has the repeat root
r1, then the general solution is

y(t) = C1e
r1t + C2te

r1t.

Example 1. Consider 4y′′ − 12y′ + 9y = 0 with y(0) = 6 and y′(0) = 3. Since the characteristic equation
4r2 − 12r + 9 = 0 has the repeated root r1 = 3/2, the general solution is

y(t) = C1e
3t/2 + C2te

3t/2.

Since

y′(t) =
3

2
C1e

3t/2 + C2e
3t/2 +

3

2
C2te

3t/2,

we have y(0) = 3
2C1 = 6 and y′(0) = 3

2C1 + C2 = 3, which gives

y(t) = 6e3t/2 − 6te3t/2.
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Consider y′′ + py′ + qy = 0 for p, q ∈ R. Suppose r1, r2 are the roots of the characteristic equation
r2 + pr + q = 0. Then, the general solution is

y(t) =


C1e

r1t + C2e
r2t, if r1, r2 ∈ R, r1 6= r2,

eλt(C1 cosµ+ C2 sinµ), if r1, r2 ∈ C, r1 = λ+ iµ, r2 = λ− iµ,
C1e

r1t + C2te
r1t, if r1 = r2.

Example 2. Consider t2y′′ + 3ty′ + y = 0 for t > 0. One can see that y1(t) = t−1 is a solution. Our goal is
to find another solution from y1 using the method that we used before. Let y(t) = v(t)y1(t) = v(t)t−1. If it
is a solution, then

t2y′′ + 3ty′ + y = t2(v(t)t−1)′′ − 4t(v(t)t−1)′ + 6v(t)t−1

= t2(v′′(t)t−1 − 2v′(t)t−2 + 2v(t)t−3) + 3t(v′(t)t−1 − v(t)t−2) + v(t)t−1

= tv′′(t) + v′

= 0.

Let w = v′, then we obtain a first order ODE: tw′ = −w. Since it is separable, we solve it to obtain

w =
C

t
= v′.

Thus, v(t) = C1 + C2 ln t and the general solution is

y(t) =
C1

t
+ C2

ln t

t
.

This method is called the reduction of the order.

Lecture 14. Nonhomogeneous Equations; Method of Undetermined
Coefficients (Sec 3.5)

Let p(t), q(t), g(t) are continuous functions on an open interval I. Let L be a differential operator defined
by L[y] = y′′ + p(t)y′ + q(t)y. Consider a nonhomogeneous equation L[y] = g(t) and the corresponding
homogeneous equation L[y] = 0.

Theorem 3. Let Y1 and Y2 be solutions to L[y] = g(t), then Y1 − Y2 is a solution to L[y] = 0.

Theorem 4. Let Y be a solution to L[y] = g(t) and {y1, y2} a fundamental set of solutions of L[y] = 0,
then the general solution to L[y] = g(t) is

y(t) = Y (t) + C1y1(t) + C2y2(t).

In this section, we discuss how we can find a particular solution to nonhomogeneous equations where g(t)
is a sum of products of polynomials, exponentials, and trigonometric functions.

Theorem 5. Consider L[y] = g(t) and let g(t) = g1(t) + g2(t). Let Y1, Y2 be solutions to L[y] = g1(t) and
L[y] = g2(t) respectively. Then Y1 + Y2 is a solution to L[y] = g(t).

1 Polynomials

Example 6. Consider y′′ − 2y′ − 3y = 3t2. Let Y (t) = At2 +Bt+ C, then

y′′ − 2y′ − 3y = (At2 +Bt+ C)′′ − 2(At2 +Bt+ C)′ − 3(At2 +Bt+ C)

= 2A− 4At− 2B − 3At2 − 3Bt− 3C

= −3At2 − (4A+ 3B)t+ (2A− 2B − 3C)

= 3t2.
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Thus, A = −1, B = 4/3, and C = −14/9. Thus, the general solution is

y(t) = −t2 +
4

3
t− 14

9
+ C1e

−t + C2e
3t.

If y′′ − 2y′ = 3t2, then Y (t) = At2 + Bt + C won’t work because the degree of the LHS is 1. In
this case, Y (t) = t(At2 + Bt + C). If y′′ = 3t2, then Y (t) = t2(At2 + Bt + C) will work. In general, if
py′′ + qy′ + ry = Pn(t) and Pn(t) is a polynomial of degree n, then

Y (t) =


Ant

n + · · ·+A0, if r 6= 0,

t(Ant
n + · · ·+A0), if r = 0, q 6= 0,

t2(Ant
n + · · ·+A0), if r = q = 0.

2 Exponential functions

Example 7. Consider y′′ − 2y′ − 3y = 2et. Let Y (t) = Cet, then −4Cet = 2et and so C = − 1
2 . Thus, the

general solution is

y(t) = −1

2
et + C1e

−t + C2e
3t.

Example 8. Consider y′′ − 2y′ − 3y = 4e−t. Let Y (t) = Ce−t, then 0 = 4e−t. This is because Ce−t is a
solution to the corresponding homogeneous equation. Let Y (t) = Cte−t, then

y′′ − 2y′ − 3y = (Cte−t)′′ − 2(Cte−t)′ − 3Cte−t

= C(te−t − 2e−t − 2e−t + 2te−t − 3te−t)

= −4Ce−t

= 4e−t.

So C = −1 and Y (t) = −te−t. Thus, the general solution is

y(t) = −te−t + C1e
−t + C2e

3t.

Example 9. Consider y′′ − 2y′ + y = 2et. As before Y (t) = Cet won’t work because it is a solution to the
corresponding homogeneous equation. However, Y (t) = Ctet is also a solution because the characteristic
has the repeated solution r = 1. In this case, we try Y (t) = Ct2et. Indeed, we have

y′′ − 2y′ + y = (Ct2et)′′ − 2(Ct2et)′ + Ct2et

= C(t2et + 4tet + 2et − 4tet − 2t2et + t2et)

= 2Cet

= 2et.

Then 2Cet = 2et and so C = 1. Thus, the general solution is

y(t) = t2et + C1e
−t + C2e

3t.

In general, if py′′ + qy′ + ry = Pn(t)eαt and Pn(t) is a polynomial of degree n, then

Y (t) =


eαt(Ant

n + · · ·+A0), or

teαt(Ant
n + · · ·+A0), or

t2eαt(Ant
n + · · ·+A0).

This depends on whether eαt and teαt are solutions to the corresponding homogeneous equation.
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3 Sine and cosine functions

Example 10. Consider y′′ − 2y′ − 3y = 13 sin(2t). Let Y (t) = A cos(2t) +B sin(2t), then

y′′ − 2y′ − 3y = −4(A cos(2t) +B sin(2t)) + 4(A sin(2t)−B cos(2t))− 3(A cos(2t) +B sin(2t))

= −(7A+ 4B) cos(2t) + (4A− 7B) sin(2t)

= 13 sin(2t).

So, A = −7/5 and B = −4/5. Thus, the general solution is

y(t) = −1

5
(7 cos(2t) + 4 sin(2t)) + C1e

−t + C2e
3t.

In general, if py′′ + qy′ + ry = g(t) where g(t) = Pn(t)eαt cos(βt) or g(t) = Pn(t)eαt sin(βt) and Pn(t) is
a polynomial of degree n, then

Y (t) = ts(eαt(Ant
n + · · ·+A0) cos(βt) + eαt(Ant

n + · · ·+A0) sin(βt))

for some s = 0, 1, 2.

Lecture 15. Variation of Parameters (Sec 3.6)

Theorem 11. Let p(t), q(t), g(t) are continuous on an open interval I and L[y] = y′′ + p(t)y′ + q(t)y. Let
{y1, y2} be a fundamental set of solutions to L[y] = 0 and t0 ∈ I, then

Y (t) = v1(t)y1(t) + v2(t)y2(t)

is a particular solution to L[y] = g(t) where

v1(t) = −
∫ t

t0

y2(s)g(s)

W [y1, y2](s)
ds,

v2(t) =

∫ t

t0

y1(s)g(s)

W [y1, y2](s)
ds.

Proof. The idea is to let Y (t) = v1(t)y1(t) + v2(t)y2(t) and find the conditions for v1(t) and v2(t). Assume
that v′1y1 + v′2y2 = 0 for simplicity (because we will determine v1, v2 later), then

Y ′ = v′1y1 + v1y
′
1 + v′2y2 + v2y

′
2 = v1y

′
1 + v2y

′
2

and

Y ′′ = v1y
′′
1 + v2y

′′
2 + v′1y

′
1 + v′2y

′
2.

If Y is a solution to the equation L[y] = g(t), then

L[Y ] = v1L[y1] + v2L[y2] + v′1y
′
1 + v′2y

′
2

= v′1y
′
1 + v′2y

′
2

= g(t).

Thus, our goal is to find v1 and v2 such that

v′1y1 + v′2y2 = 0,

v′1y
′
1 + v′2y

′
2 = g(t).

This can be written in terms of matrices:(
y1 y2
y′1 y′2

)(
v′1
v′2

)
=

(
0
g(t)

)
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Solving this system of equations, we get(
v′1
v′2

)
=

1

W [y1, y2]

(
y′2 −y2
−y′1 y1

)(
0
g(t)

)
=

1

W [y1, y2](t)

(
−y2(t)g(t)
y1(t)g(t)

)
.

Example 12. Consider y′′ − 2y′ − 3y = 2et, then y1(t) = e−t and y2(t) = e3t form a fundamental set of
solutions. Direct computations yield

W [y1, y2](t) = y1y
′
2 − y′1y2 = 4e2t

v1(t) = −
∫ t

0

y2(s)g(s)

W [y1, y2](s)
ds

= −1

2

∫ t

0

e2s ds

= −1

4
(e2t − 1)

v2(t) =

∫ t

0

y1(s)g(s)

W [y1, y2](s)
ds

=
1

2

∫ t

0

e−2s ds

= −1

4
(e−2t − 1).

Thus, we obtain a particular solution

Y (t) = v1(t)y1(t) + v2(t)y2(t)

= −1

4
(e2t − 1)e−t − 1

4
(e−2t − 1)e3t

= −1

2
et +

1

4
(e−t + e3t).
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