Math 285 Lecture Note: Week 5

Daesung Kim

Lecture 12. Complex Roots of the Characteristic Equation (Sec 3.3)

Example 1. Consider $y^{\prime \prime}+2 y^{\prime}+5=0$. As before, let $y(t)=e^{r t}$, then we get the characteristic equation $r^{2}+2 r+5=0$. The roots for the equation are $r=-1+2 i,-1-2 i$. This yields that $y(t)=e^{(-1+2 i) t}, e^{(-1-2 i) t}$ are solutions to the DE. What are these functions?

Example 2. Let's consider $y^{\prime \prime}+y=0$, then the characteristic equation is $r^{2}+1=0$, whose roots are $r=i,-i$. Thus, $y(t)=e^{i t}, e^{-i t}$ are solutions. On the other hands, we already know that $y(t)=\sin t, \cos t$ are solutions.

Euler's Formula enables us to define the exponent with complex numbers, which says

$$
e^{i t}=\cos t+i \sin t
$$

For example, $e^{\pi i / 2}=i$, $e^{\pi i}=-1$, and $e^{\pi i / 3}=\cos (\pi / 3)+i \sin (\pi / 3)=\frac{1}{2}(1+\sqrt{3} i)$. For general complex number $z=x+i y$, we have

$$
e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)
$$

Note that if z is a complex number, then so is e^{z} and it could be negative.
Example 3. Consider $y^{\prime \prime}+2 y^{\prime}+5=0$, then $y(t)=e^{r_{1} t}, e^{r_{2} t}$ are solutions where $r_{1}=-1+2 i$ and $r_{2}=-1-2 i$. By the previous argument, we have

$$
\begin{aligned}
& y_{1}(t)=e^{-t}(\cos (2 t)+i \sin (2 t)) \\
& y_{2}(t)=e^{-t}(\cos (-2 t)+i \sin (-2 t))=e^{-t}(\cos (2 t)-i \sin (2 t))
\end{aligned}
$$

Then, the Wronskian is

$$
\begin{aligned}
W\left[y_{1}, y_{2}\right](t) & =\operatorname{det}\left(\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right) \\
& =r_{2} y_{1}(t) y_{2}(t)-r_{1} y_{1}(t) y_{2}(t) \\
& =\left(r_{2}-r_{1}\right) e^{\left(r_{1}+r_{2}\right) t} \\
& =-4 i e^{-2 t}
\end{aligned}
$$

Since $W\left[y_{1}, y_{2}\right](0)=-4 i \neq 0,\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions.
However, this fundamental set is not convenient because y_{1} and y_{2} are complex-valued solutions. Consider

$$
\begin{aligned}
& u(t)=\frac{1}{2}\left(y_{1}(t)+y_{2}(t)\right)=e^{-t} \cos (2 t) \\
& v(t)=\frac{1}{2 i}\left(y_{1}(t)-y_{2}(t)\right)=e^{-t} \sin (2 t)
\end{aligned}
$$

Note that these are also solutions. Furthermore, the Wronskian is

$$
\begin{aligned}
W[u, v](t) & =u(t) v^{\prime}(t)-u^{\prime}(t) v(t) \\
& =e^{-2 t}(\cos (2 t)(2 \cos (2 t)-\sin (2 t))+\sin (2 t)(\cos (2 t)+2 \sin (2 t))) \\
& =2 e^{-2 t}\left(\cos ^{2}(2 t)+\sin ^{2}(2 t)\right) \\
& =2 e^{-2 t} \\
& \neq 0 .
\end{aligned}
$$

Thus, $\{u, v\}$ is a fundamental set of solutions. The general real valued solution of the DE is

$$
y(t)=e^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)
$$

Note that

$$
\begin{aligned}
W[u, v](t) & =u(t) v^{\prime}(t)-u^{\prime}(t) v(t) \\
& =\frac{1}{4 i}\left(\left(y_{1}+y_{2}\right)\left(y_{1}^{\prime}-y_{2}^{\prime}\right)-\left(y_{1}^{\prime}+y_{2}^{\prime}\right)\left(y_{1}-y_{2}\right)\right) \\
& =-\frac{1}{2 i}\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) \\
& =-\frac{1}{2 i} W\left[y_{1}, y_{2}\right](t)
\end{aligned}
$$

This is because

$$
\left(\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2 i} & -\frac{1}{2 i}
\end{array}\right)
$$

Example 4. Consider $y^{\prime \prime}-4 y^{\prime}+5 y=0$ with $y(0)=1$ and $y^{\prime}(0)=3$. The characteristic equation is $r^{2}-4 r+5=0$ and so the roots are $r=2+i, 2-i$. Thus, $\{u, v\}$ is a fundamental set of solutions where $u=e^{2 t} \cos t$ and $v=e^{2 t} \sin t$. The general solution is

$$
y(t)=e^{2 t}\left(C_{1} \cos t+C_{2} \sin t\right)
$$

Note that

$$
y^{\prime}(t)=2 e^{2 t}\left(C_{1} \cos t+C_{2} \sin t\right)+e^{2 t}\left(-C_{1} \sin t+C_{2} \cos t\right)
$$

By the initial conditions, we have

$$
\begin{aligned}
y(0) & =C_{1}=1 \\
y^{\prime}(0) & =2 C_{1}+C_{2}=3
\end{aligned}
$$

and $y(t)=e^{2 t}(\cos t+\sin t)$.

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

