Math 285 Lecture Note: Week 5

Daesung Kim

Lecture 12. Complex Roots of the Characteristic Equation (Sec 3.3)

Example 1. Consider y'' + 2y' + 5 = 0. As before, let $y(t) = e^{rt}$, then we get the characteristic equation $r^2 + 2r + 5 = 0$. The roots for the equation are r = -1 + 2i, -1 - 2i. This yields that $y(t) = e^{(-1+2i)t}$, $e^{(-1-2i)t}$ are solutions to the DE. What are these functions?

Example 2. Let's consider y'' + y = 0, then the characteristic equation is $r^2 + 1 = 0$, whose roots are r = i, -i. Thus, $y(t) = e^{it}, e^{-it}$ are solutions. On the other hands, we already know that $y(t) = \sin t, \cos t$ are solutions.

Euler's Formula enables us to define the exponent with complex numbers, which says

$$e^{it} = \cos t + i\sin t.$$

For example, $e^{\pi i/2} = i$, $e^{\pi i} = -1$, and $e^{\pi i/3} = \cos(\pi/3) + i\sin(\pi/3) = \frac{1}{2}(1 + \sqrt{3}i)$. For general complex number z = x + iy, we have

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y).$$

Note that if z is a complex number, then so is e^z and it could be negative.

Example 3. Consider y'' + 2y' + 5 = 0, then $y(t) = e^{r_1 t}, e^{r_2 t}$ are solutions where $r_1 = -1 + 2i$ and $r_2 = -1 - 2i$. By the previous argument, we have

$$y_1(t) = e^{-t}(\cos(2t) + i\sin(2t)),$$

$$y_2(t) = e^{-t}(\cos(-2t) + i\sin(-2t)) = e^{-t}(\cos(2t) - i\sin(2t)).$$

Then, the Wronskian is

$$W[y_1, y_2](t) = \det \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix}$$

= $r_2 y_1(t) y_2(t) - r_1 y_1(t) y_2(t)$
= $(r_2 - r_1) e^{(r_1 + r_2)t}$
= $-4ie^{-2t}$

Since $W[y_1, y_2](0) = -4i \neq 0$, $\{y_1, y_2\}$ is a fundamental set of solutions.

However, this fundamental set is not convenient because y_1 and y_2 are complex-valued solutions. Consider

$$u(t) = \frac{1}{2}(y_1(t) + y_2(t)) = e^{-t}\cos(2t),$$

$$v(t) = \frac{1}{2i}(y_1(t) - y_2(t)) = e^{-t}\sin(2t).$$

Note that these are also solutions. Furthermore, the Wronskian is

$$W[u, v](t) = u(t)v'(t) - u'(t)v(t)$$

= $e^{-2t}(\cos(2t)(2\cos(2t) - \sin(2t)) + \sin(2t)(\cos(2t) + 2\sin(2t)))$
= $2e^{-2t}(\cos^2(2t) + \sin^2(2t))$
= $2e^{-2t}$
 $\neq 0.$

Thus, $\{u, v\}$ is a fundamental set of solutions. The general real valued solution of the DE is

$$y(t) = e^{-t} (C_1 \cos(2t) + C_2 \sin(2t)).$$

Note that

$$\begin{split} W[u,v](t) &= u(t)v'(t) - u'(t)v(t) \\ &= \frac{1}{4i}((y_1 + y_2)(y_1' - y_2') - (y_1' + y_2')(y_1 - y_2)) \\ &= -\frac{1}{2i}(y_1y_2' - y_1'y_2) \\ &= -\frac{1}{2i}W[y_1,y_2](t). \end{split}$$

This is because

$$\begin{pmatrix} u & v \\ u' & v' \end{pmatrix} = \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2i} & -\frac{1}{2i} \end{pmatrix}.$$

Example 4. Consider y'' - 4y' + 5y = 0 with y(0) = 1 and y'(0) = 3. The characteristic equation is $r^2 - 4r + 5 = 0$ and so the roots are r = 2 + i, 2 - i. Thus, $\{u, v\}$ is a fundamental set of solutions where $u = e^{2t} \cos t$ and $v = e^{2t} \sin t$. The general solution is

$$y(t) = e^{2t}(C_1 \cos t + C_2 \sin t).$$

Note that

$$y'(t) = 2e^{2t}(C_1\cos t + C_2\sin t) + e^{2t}(-C_1\sin t + C_2\cos t)$$

By the initial conditions, we have

$$y(0) = C_1 = 1,$$

 $y'(0) = 2C_1 + C_2 = 3,$

and $y(t) = e^{2t}(\cos t + \sin t)$.

References

[BD] Boyce and DiPrima, *Elementary Differential Equations and Boundary Value Problems*, 10th Edition, Wiley

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address:*daesungk@illinois.edu