Math 285 Lecture Note: Week 4

Daesung Kim

Lecture 9. Autonomous Equations and Population Dynamics II (Sec 2.5)

1 A critical threshold

Consider

$$y' = -r(1 - \frac{y}{T})y.$$

We draw the graph of f(y).

- (i) y(t) = 0 and y(t) = T are equilibrium solutions.
- (ii) If 0 < y < T, then y decreases. If y > T, then y increases. This T is called a critical threshold.
- (iii) y(t) = 0 is asymptotically stable and y(t) = T is unstable.
- (iv) If 0 < y < T/2, the graph is concave up. If T/2 < y < T, the graph is concave down. If y > T, the graph is concave up.
- (v) By the separation method, the solution is

$$y(t) = \frac{y_0 T}{y_0 + (T - y_0)e^{rt}}.$$

(vi) If $y_0 \in (0,T)$, then $y(t) \to 0$ as $t \to \infty$. If $y_0 > T$, then the solution blows up in finite time

$$t_* = \frac{1}{r} \ln \frac{y_0}{y_0 - T}.$$

2 Logistic growth with a threshold

Consider

$$y' = -r(1 - \frac{y}{T})(1 - \frac{y}{K})y$$

where r > 0 and 0 < T < K. We draw the graph of f(y).

Suppose f(y) has local minimum at $y = y_1$ and local maximum at $y = y_2$.

- (i) y(t) = 0, T, K are equilibrium solutions.
- (ii) If 0 < y < T, then y decreases. If T < y < K then y increases. If y > K, then y decreases.
- (iii) y(t) = 0 and y(t) = K are asymptotically stable and y(t) = T is unstable.
- (iv) If $0 < y < y_1$, then the graph is concave up. If $y_1 < y < T$, then the graph is concave down. If $T < y < y_2$, then the graph is concave up. If $y_2 < y < K$, the graph is concave down. If y > K, the graph if concave up.

Lecture 10. Second-order Homogeneous Equations with Constant Coefficients (Sec 3.1)

A second order ODE has the form

$$y'' = F(t, y, y').$$

If F is linear, the equation can be written as

$$y'' + p(t)y' + q(t)y = g(t).$$

When we discuss initial value problems for first order ODEs, the initial condition is given at one point (t_0, y_0) . However, for second order ODEs, the initial condition consists of $y(t_0) = y_0$ and $y'(t_0) = y'_0$. A second order ODE is called homogeneous if q(t) = 0. If not, it is called nonhomogeneous.

In this section, we discuss second order homogeneous linear ODEs with constant coefficients. We start with a simple example.

Example 1. Consider y'' - 4y = 0 with y(0) = 2 and y'(0) = 8. Suppose ϕ and ψ are solutions for the equation. Then, the linearity of the equation yields the following:

(i) For any $a, b \in \mathbb{R}$, $a\phi(t)$ and $b\psi(t)$ are also solutions. This is because

$$(a\phi(t))'' = (a\phi'(t))' = a\phi''(t) = 4a\phi(t).$$

(ii) The sum $\phi + \psi$ is also a solution. This is because

$$(\phi(t) + \psi(t))'' = (\phi'(t) + \psi'(t))' = \phi''(t) + \psi''(t) = 4\phi(t) + 4\psi(t).$$

Indeed, $\phi(t) = e^{2t}$ and $\psi(t) = e^{-2t}$ are solutions so that $y(t) = a\phi(t) + b\psi(t) = ae^{2t} + be^{-2t}$ is also a solution for $a, b \in \mathbb{R}$. The constants will be determined by the initial conditions. Since $y'(t) = 2ae^{2t} - 2be^{-2t}$, we have

$$y(0) = a + b = 2,$$

 $y'(0) = 2a - 2b = 8.$

Thus, a = 3 and b = -1. The solution is $y(t) = 3e^{2t} - e^{-2t}$.

Suppose we have y'' + py' + qy = 0 where $p, q \in \mathbb{R}$. Based on the previous example, we put $y(t) = e^{rt}$. Then,

$$y'' + py' + qy = (r^2 + pr + q)e^{rt} = 0.$$

So, $y(t) = e^{rt}$ is a solution to the equation if $r^2 + pr + q = 0$. The last equation is called the *characteristic* equation.

Example 2. Consider y'' + 4y' + 3y = 0 with y(0) = 3 and y'(0) = -5. If $y(t) = e^{rt}$ is a solution, then

$$y'' + 4y' + 3y = (r^2 + 4r + 3)e^{rt} = 0.$$

The characteristic equation is $r^2 + 4r + 3 = (r+1)(r+3) = 0$. This holds if r = -1, -3. Thus, $\phi(t) = e^{-t}$ and $\psi(t) = e^{-3t}$ are solutions to the equation. You can check that

$$y(t) = a\phi(t) + b\psi(t) = ae^{-t} + be^{-3t}$$

is also a solution as we have seen in the previous example. By the initial conditions, we get

$$y(0) = a + b = 3,$$

 $y'(0) = -a - 3b = -5,$

which yields a = 2 and b = 1. Thus, the solution is $y(t) = 2e^{-t} + e^{-3t}$.

Lecture 11. Solutions of Second-order Linear Homogeneous Equations (Sec 3.2)

Theorem 3 (Existence and Uniqueness). Consider

$$y'' + p(t)y' + q(t)y = g(t),$$
 $y(t_0) = y_0,$ $y'(t_0) = y'_0$

where p(t), q(t), g(t) are continuous on $I = (\alpha, \beta)$ and $t_0 \in I$. Then, there exists a unique solution on I.

Proof. Beyond the scope of the course.

Example 4. Let t(t-5)y'' + 3ty' + 4y = 2 with y(2) = 2 and y'(2) = 1. By normalizing the equations, we get

$$y'' + \frac{3}{t-5}y' + \frac{4}{t(t-5)}y = \frac{2}{t(t-5)}.$$

Thus, the coefficients are continuous on $(-\infty, 0) \cup (0, 5) \cup (5, \infty)$. Since $2 \in (0, 5)$, the longest interval in which the initial value problem has a unique solution is (0, 5).

We consider a second order homogeneous linear ODE of the form

$$y'' + p(t)y' + q(t)y = 0$$

where p(t) and q(t) are continuous on the interval $I = (\alpha, \beta)$.

We define the differential operator L (here, an operator is a map from a set of functions to another set of functions) by $\phi \mapsto L[\phi]$,

$$L[\phi](t) = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t).$$

In this context, a solution of the equation can be thought of as a function ϕ such that $L[\phi] = 0$. That is, the set of solutions is the set of "roots" of the differential operator L.

Theorem 5 (Principle of Superposition). If y_1 and y_2 are solutions to

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

then $c_1y_1 + c_2y_2$ is also a solution for $c_1, c_2 \in \mathbb{R}$. In other words, if $L[y_1] = L[y_2] = 0$, then $L[c_1y_1 + c_2y_2] = 0$ for all $c_1, c_2 \in \mathbb{R}$.

Proof. For any functions y_1, y_2 and $c_1, c_2 \in \mathbb{R}$, we have

$$\begin{split} L[c_1y_1 + c_2y_2] &= (c_1y_1 + c_2y_2)'' + p(t)(c_1y_1 + c_2y_2)' + q(t)(c_1y_1 + c_2y_2) \\ &= c_1(y_1'' + p(t)y_1' + q(t)y_1) + c_2(y_2'' + p(t)y_2' + q(t)y_2) \\ &= c_1L[y_1] + c_2L[y_2], \end{split}$$

which proves the theorem.

Example 6. Note that the superposition property holds for any linear differential equations. Consider a nonlinear equation 2y'y = 1. Then, $y_1(t) = \sqrt{t}$ and $y_2(t) = \sqrt{t+1}$ are solutions. But, one can see that $c_1y_1 + c_2y_2$ is not a solution for any $c_1, c_2 \neq 0$.

For a 2nd linear equation, we can find infinitely many solutions if we know two different solutions. A natural question is if having two solutions is enough. This is the case if the two solutions are "truely" different.

Definition 7. For two functions $y_1(t)$ and $y_2(t)$, the Wronskian of y_1 and y_2 is a function of t defined by

$$W[y_1, y_2](t) = \det \begin{pmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{pmatrix} = y_1(t)y'_2(t) - y'_1(t)y_2(t)$$

Example 8. If $y_1(t) = e^{-t}$ and $y_2(t) = e^{-3t}$, then

$$W[y_1, y_2](t) = \det \begin{pmatrix} e^{-t} & e^{-3t} \\ -e^{-t} & -3e^{-3t} \end{pmatrix} = e^{-t}e^{-3t} - 3e^{-t}e^{-3t} = -2e^{-4t}.$$

Theorem 9. Let y_1 and y_2 be solutions to

$$L[y] = y'' + p(t)y' + q(t)y = 0$$

where p(t), q(t) are continuous on an open interval $I = (\alpha, \beta)$. Then, every solution to the equation has the form $\phi(t) = c_1y_1(t) + c_2y_2(t)$ for some $c_1, c_2 \in \mathbb{R}$ if and only if

$$W[y_1, y_2](t_0) = y_1(t_0)y_2'(t_0) - y_2(t_0)y_1'(t_0) \neq 0$$

for some $t_0 \in I$.

Definition 10. Let y_1 and y_2 be solutions to

$$L[y] = y'' + p(t)y' + q(t)y = 0$$

where p(t), q(t) are continuous on an open interval $I = (\alpha, \beta)$. A set $\{y_1, y_2\}$ is called a fundamental set of solutions if $W[y_1, y_2](t_0) \neq 0$ for some $t_0 \in I$. In this case,

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is called the general solution.

Example 11. Consider y'' + 4y' + 3y = 0 with y(0) = 3 and y'(0) = -5. The characteristic equation is $r^2 + 4r + 3 = (r+1)(r+3) = 0$. Thus, $y_1(t) = e^{-t}$ and $y_2(t) = e^{-3t}$ are solutions to the equation. Since

$$W[y_1, y_2](t) = -2e^{-4t} \neq 0$$

for all $t \in \mathbb{R}$, $\{e^{-t}, e^{-3t}\}$ is a fundamental set of solutions and

$$y(t) = c_1 e^{-t} + c_2 e^{-3t}$$

is the general solution.

Theorem 12. Let y_1 and y_2 be solutions to

$$L[y] = y'' + p(t)y' + q(t)y = 0$$

where p(t), q(t) are continuous on an open interval $I = (\alpha, \beta)$. If

$$y_1(t_0) = 1,$$
 $y'_1(t_0) = 0$
 $y_2(t_0) = 0,$ $y'_2(t_0) = 1$

for some $t_0 \in I$, then $\{y_1, y_2\}$ is a fundamental set of solutions.

Example 13. Consider y'' - y = 0. It is easy to see that e^t, e^{-t} are solutions. We also have seen that $y_1(t) = \cosh(t)$ and $y_2(t) = \sinh(t)$ are solutions. Since

$$y_1(t_0) = 1,$$
 $y'_1(t_0) = 0$
 $y_2(t_0) = 0,$ $y'_2(t_0) = 1,$

they form a fundamental set of solutions.

References

[BD] Boyce and DiPrima, *Elementary Differential Equations and Boundary Value Problems*, 10th Edition, Wiley

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address: daesungk@illinois.edu$