
Math 285 Lecture Note: Week 4

Daesung Kim

Lecture 9. Autonomous Equations and Population Dynamics II
(Sec 2.5)

1 A critical threshold

Consider

y′ = −r(1− y

T
)y.

We draw the graph of f(y).

T/2 T

y

f(y)

(i) y(t) = 0 and y(t) = T are equilibrium solutions.

(ii) If 0 < y < T , then y decreases. If y > T , then y increases. This T is called a critical threshold.

(iii) y(t) = 0 is asymptotically stable and y(t) = T is unstable.

(iv) If 0 < y < T/2, the graph is concave up. If T/2 < y < T , the graph is concave down. If y > T , the
graph is concave up.

(v) By the separation method, the solution is

y(t) =
y0T

y0 + (T − y0)ert
.

(vi) If y0 ∈ (0, T ), then y(t)→ 0 as t→∞. If y0 > T , then the solution blows up in finite time

t∗ =
1

r
ln

y0
y0 − T

.
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2 Logistic growth with a threshold

Consider

y′ = −r(1− y

T
)(1− y

K
)y

where r > 0 and 0 < T < K. We draw the graph of f(y).
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y
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Suppose f(y) has local minimum at y = y1 and local maximum at y = y2.

(i) y(t) = 0, T,K are equilibrium solutions.

(ii) If 0 < y < T , then y decreases. If T < y < K then y increases. If y > K, then y decreases.

(iii) y(t) = 0 and y(t) = K are asymptotically stable and y(t) = T is unstable.

(iv) If 0 < y < y1, then the graph is concave up. If y1 < y < T , then the graph is concave down. If
T < y < y2, then the graph is concave up. If y2 < y < K, the graph is concave down. If y > K, the
graph if concave up.

Lecture 10. Second-order Homogeneous Equations with Constant
Coefficients (Sec 3.1)

A second order ODE has the form

y′′ = F (t, y, y′).

If F is linear, the equation can be written as

y′′ + p(t)y′ + q(t)y = g(t).

When we discuss initial value problems for first order ODEs, the initial condition is given at one point
(t0, y0). However, for second order ODEs, the initial condition consists of y(t0) = y0 and y′(t0) = y′0. A
second order ODE is called homogeneous if g(t) = 0. If not, it is called nonhomogeneous.

In this section, we discuss second order homogeneous linear ODEs with constant coefficients. We start
with a simple example.

Example 1. Consider y′′ − 4y = 0 with y(0) = 2 and y′(0) = 8. Suppose φ and ψ are solutions for the
equation. Then, the linearity of the equation yields the following:
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(i) For any a, b ∈ R, aφ(t) and bψ(t) are also solutions. This is because

(aφ(t))′′ = (aφ′(t))′ = aφ′′(t) = 4aφ(t).

(ii) The sum φ+ ψ is also a solution. This is because

(φ(t) + ψ(t))′′ = (φ′(t) + ψ′(t))′ = φ′′(t) + ψ′′(t) = 4φ(t) + 4ψ(t).

Indeed, φ(t) = e2t and ψ(t) = e−2t are solutions so that y(t) = aφ(t) + bψ(t) = ae2t + be−2t is also a solution
for a, b ∈ R. The constants will be determined by the initial conditions. Since y′(t) = 2ae2t − 2be−2t, we
have

y(0) = a+ b = 2,

y′(0) = 2a− 2b = 8.

Thus, a = 3 and b = −1. The solution is y(t) = 3e2t − e−2t.

Suppose we have y′′ + py′ + qy = 0 where p, q ∈ R. Based on the previous example, we put y(t) = ert.
Then,

y′′ + py′ + qy = (r2 + pr + q)ert = 0.

So, y(t) = ert is a solution to the equation if r2 + pr + q = 0. The last equation is called the characteristic
equation.

Example 2. Consider y′′ + 4y′ + 3y = 0 with y(0) = 3 and y′(0) = −5. If y(t) = ert is a solution, then

y′′ + 4y′ + 3y = (r2 + 4r + 3)ert = 0.

The characteristic equation is r2 + 4r + 3 = (r + 1)(r + 3) = 0. This holds if r = −1,−3. Thus, φ(t) = e−t

and ψ(t) = e−3t are solutions to the equation. You can check that

y(t) = aφ(t) + bψ(t) = ae−t + be−3t

is also a solution as we have seen in the previous example. By the initial conditions, we get

y(0) = a+ b = 3,

y′(0) = −a− 3b = −5,

which yields a = 2 and b = 1. Thus, the solution is y(t) = 2e−t + e−3t.

Lecture 11. Solutions of Second-order Linear Homogeneous Equa-
tions (Sec 3.2)

Theorem 3 (Existence and Uniqueness). Consider

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0

where p(t), q(t), g(t) are continuous on I = (α, β) and t0 ∈ I. Then, there exists a unique solution on I.

Proof. Beyond the scope of the course.

Example 4. Let t(t− 5)y′′ + 3ty′ + 4y = 2 with y(2) = 2 and y′(2) = 1. By normalizing the equations, we
get

y′′ +
3

t− 5
y′ +

4

t(t− 5)
y =

2

t(t− 5)
.

Thus, the coefficients are continuous on (−∞, 0) ∪ (0, 5) ∪ (5,∞). Since 2 ∈ (0, 5), the longest interval in
which the initial value problem has a unique solution is (0, 5).

3



We consider a second order homogeneous linear ODE of the form

y′′ + p(t)y′ + q(t)y = 0

where p(t) and q(t) are continuous on the interval I = (α, β).
We define the differential operator L (here, an operator is a map from a set of functions to another set

of functions) by φ 7→ L[φ],

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t).

In this context, a solution of the equation can be thought of as a function φ such that L[φ] = 0. That is, the
set of solutions is the set of “roots” of the differential operator L.

Theorem 5 (Principle of Superposition). If y1 and y2 are solutions to

L[y] = y′′ + p(t)y′ + q(t)y = 0,

then c1y1 +c2y2 is also a solution for c1, c2 ∈ R. In other words, if L[y1] = L[y2] = 0, then L[c1y1 +c2y2] = 0
for all c1, c2 ∈ R.

Proof. For any functions y1, y2 and c1, c2 ∈ R, we have

L[c1y1 + c2y2] = (c1y1 + c2y2)′′ + p(t)(c1y1 + c2y2)′ + q(t)(c1y1 + c2y2)

= c1(y′′1 + p(t)y′1 + q(t)y1) + c2(y′′2 + p(t)y′2 + q(t)y2)

= c1L[y1] + c2L[y2],

which proves the theorem.

Example 6. Note that the superposition property holds for any linear differential equations. Consider a
nonlinear equation 2y′y = 1. Then, y1(t) =

√
t and y2(t) =

√
t+ 1 are solutions. But, one can see that

c1y1 + c2y2 is not a solution for any c1, c2 6= 0.

For a 2nd linear equation, we can find infinitely many solutions if we know two different solutions. A
natural question is if having two solutions is enough. This is the case if the two solutions are “truely”
different.

Definition 7. For two functions y1(t) and y2(t), the Wronskian of y1 and y2 is a function of t defined by

W [y1, y2](t) = det

(
y1(t) y2(t)
y′1(t) y′2(t)

)
= y1(t)y′2(t)− y′1(t)y2(t).

Example 8. If y1(t) = e−t and y2(t) = e−3t, then

W [y1, y2](t) = det

(
e−t e−3t

−e−t −3e−3t

)
= e−te−3t − 3e−te−3t = −2e−4t.

Theorem 9. Let y1 and y2 be solutions to

L[y] = y′′ + p(t)y′ + q(t)y = 0

where p(t), q(t) are continuous on an open interval I = (α, β). Then, every solution to the equation has the
form φ(t) = c1y1(t) + c2y2(t) for some c1, c2 ∈ R if and only if

W [y1, y2](t0) = y1(t0)y′2(t0)− y2(t0)y′1(t0) 6= 0

for some t0 ∈ I.

4



Definition 10. Let y1 and y2 be solutions to

L[y] = y′′ + p(t)y′ + q(t)y = 0

where p(t), q(t) are continuous on an open interval I = (α, β). A set {y1, y2} is called a fundamental set of
solutions if W [y1, y2](t0) 6= 0 for some t0 ∈ I. In this case,

y(t) = c1y1(t) + c2y2(t)

is called the general solution.

Example 11. Consider y′′ + 4y′ + 3y = 0 with y(0) = 3 and y′(0) = −5. The characteristic equation is
r2 + 4r + 3 = (r + 1)(r + 3) = 0. Thus, y1(t) = e−t and y2(t) = e−3t are solutions to the equation. Since

W [y1, y2](t) = −2e−4t 6= 0

for all t ∈ R, {e−t, e−3t} is a fundamental set of solutions and

y(t) = c1e
−t + c2e

−3t

is the general solution.

Theorem 12. Let y1 and y2 be solutions to

L[y] = y′′ + p(t)y′ + q(t)y = 0

where p(t), q(t) are continuous on an open interval I = (α, β). If

y1(t0) = 1, y′1(t0) = 0

y2(t0) = 0, y′2(t0) = 1

for some t0 ∈ I, then {y1, y2} is a fundamental set of solutions.

Example 13. Consider y′′ − y = 0. It is easy to see that et, e−t are solutions. We also have seen that
y1(t) = cosh(t) and y2(t) = sinh(t) are solutions. Since

y1(t0) = 1, y′1(t0) = 0

y2(t0) = 0, y′2(t0) = 1,

they form a fundamental set of solutions.
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