Math 285 Lecture Note: Week 4

Daesung Kim

Lecture 9. Autonomous Equations and Population Dynamics II (Sec 2.5)

1 A critical threshold

Consider

$$
y^{\prime}=-r\left(1-\frac{y}{T}\right) y
$$

We draw the graph of $f(y)$.

(i) $y(t)=0$ and $y(t)=T$ are equilibrium solutions.
(ii) If $0<y<T$, then y decreases. If $y>T$, then y increases. This T is called a critical threshold.
(iii) $y(t)=0$ is asymptotically stable and $y(t)=T$ is unstable.
(iv) If $0<y<T / 2$, the graph is concave up. If $T / 2<y<T$, the graph is concave down. If $y>T$, the graph is concave up.
(v) By the separation method, the solution is

$$
y(t)=\frac{y_{0} T}{y_{0}+\left(T-y_{0}\right) e^{r t}}
$$

(vi) If $y_{0} \in(0, T)$, then $y(t) \rightarrow 0$ as $t \rightarrow \infty$. If $y_{0}>T$, then the solution blows up in finite time

$$
t_{*}=\frac{1}{r} \ln \frac{y_{0}}{y_{0}-T} .
$$

2 Logistic growth with a threshold

Consider

$$
y^{\prime}=-r\left(1-\frac{y}{T}\right)\left(1-\frac{y}{K}\right) y
$$

where $r>0$ and $0<T<K$. We draw the graph of $f(y)$.

Suppose $f(y)$ has local minimum at $y=y_{1}$ and local maximum at $y=y_{2}$.
(i) $y(t)=0, T, K$ are equilibrium solutions.
(ii) If $0<y<T$, then y decreases. If $T<y<K$ then y increases. If $y>K$, then y decreases.
(iii) $y(t)=0$ and $y(t)=K$ are asymptotically stable and $y(t)=T$ is unstable.
(iv) If $0<y<y_{1}$, then the graph is concave up. If $y_{1}<y<T$, then the graph is concave down. If $T<y<y_{2}$, then the graph is concave up. If $y_{2}<y<K$, the graph is concave down. If $y>K$, the graph if concave up.

Lecture 10. Second-order Homogeneous Equations with Constant Coefficients (Sec 3.1)

A second order ODE has the form

$$
y^{\prime \prime}=F\left(t, y, y^{\prime}\right)
$$

If F is linear, the equation can be written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

When we discuss initial value problems for first order ODEs, the initial condition is given at one point $\left(t_{0}, y_{0}\right)$. However, for second order ODEs, the initial condition consists of $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$. A second order ODE is called homogeneous if $g(t)=0$. If not, it is called nonhomogeneous.

In this section, we discuss second order homogeneous linear ODEs with constant coefficients. We start with a simple example.

Example 1. Consider $y^{\prime \prime}-4 y=0$ with $y(0)=2$ and $y^{\prime}(0)=8$. Suppose ϕ and ψ are solutions for the equation. Then, the linearity of the equation yields the following:
(i) For any $a, b \in \mathbb{R}, a \phi(t)$ and $b \psi(t)$ are also solutions. This is because

$$
(a \phi(t))^{\prime \prime}=\left(a \phi^{\prime}(t)\right)^{\prime}=a \phi^{\prime \prime}(t)=4 a \phi(t)
$$

(ii) The sum $\phi+\psi$ is also a solution. This is because

$$
(\phi(t)+\psi(t))^{\prime \prime}=\left(\phi^{\prime}(t)+\psi^{\prime}(t)\right)^{\prime}=\phi^{\prime \prime}(t)+\psi^{\prime \prime}(t)=4 \phi(t)+4 \psi(t)
$$

Indeed, $\phi(t)=e^{2 t}$ and $\psi(t)=e^{-2 t}$ are solutions so that $y(t)=a \phi(t)+b \psi(t)=a e^{2 t}+b e^{-2 t}$ is also a solution for $a, b \in \mathbb{R}$. The constants will be determined by the initial conditions. Since $y^{\prime}(t)=2 a e^{2 t}-2 b e^{-2 t}$, we have

$$
\begin{aligned}
y(0) & =a+b=2 \\
y^{\prime}(0) & =2 a-2 b=8
\end{aligned}
$$

Thus, $a=3$ and $b=-1$. The solution is $y(t)=3 e^{2 t}-e^{-2 t}$.
Suppose we have $y^{\prime \prime}+p y^{\prime}+q y=0$ where $p, q \in \mathbb{R}$. Based on the previous example, we put $y(t)=e^{r t}$. Then,

$$
y^{\prime \prime}+p y^{\prime}+q y=\left(r^{2}+p r+q\right) e^{r t}=0
$$

So, $y(t)=e^{r t}$ is a solution to the equation if $r^{2}+p r+q=0$. The last equation is called the characteristic equation.
Example 2. Consider $y^{\prime \prime}+4 y^{\prime}+3 y=0$ with $y(0)=3$ and $y^{\prime}(0)=-5$. If $y(t)=e^{r t}$ is a solution, then

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\left(r^{2}+4 r+3\right) e^{r t}=0
$$

The characteristic equation is $r^{2}+4 r+3=(r+1)(r+3)=0$. This holds if $r=-1,-3$. Thus, $\phi(t)=e^{-t}$ and $\psi(t)=e^{-3 t}$ are solutions to the equation. You can check that

$$
y(t)=a \phi(t)+b \psi(t)=a e^{-t}+b e^{-3 t}
$$

is also a solution as we have seen in the previous example. By the initial conditions, we get

$$
\begin{aligned}
y(0) & =a+b=3 \\
y^{\prime}(0) & =-a-3 b=-5
\end{aligned}
$$

which yields $a=2$ and $b=1$. Thus, the solution is $y(t)=2 e^{-t}+e^{-3 t}$.

Lecture 11. Solutions of Second-order Linear Homogeneous Equations (Sec 3.2)

Theorem 3 (Existence and Uniqueness). Consider

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

where $p(t), q(t), g(t)$ are continuous on $I=(\alpha, \beta)$ and $t_{0} \in I$. Then, there exists a unique solution on I.
Proof. Beyond the scope of the course.
Example 4. Let $t(t-5) y^{\prime \prime}+3 t y^{\prime}+4 y=2$ with $y(2)=2$ and $y^{\prime}(2)=1$. By normalizing the equations, we get

$$
y^{\prime \prime}+\frac{3}{t-5} y^{\prime}+\frac{4}{t(t-5)} y=\frac{2}{t(t-5)}
$$

Thus, the coefficients are continuous on $(-\infty, 0) \cup(0,5) \cup(5, \infty)$. Since $2 \in(0,5)$, the longest interval in which the initial value problem has a unique solution is $(0,5)$.

We consider a second order homogeneous linear ODE of the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where $p(t)$ and $q(t)$ are continuous on the interval $I=(\alpha, \beta)$.
We define the differential operator L (here, an operator is a map from a set of functions to another set of functions) by $\phi \mapsto L[\phi]$,

$$
L[\phi](t)=\phi^{\prime \prime}(t)+p(t) \phi^{\prime}(t)+q(t) \phi(t)
$$

In this context, a solution of the equation can be thought of as a function ϕ such that $L[\phi]=0$. That is, the set of solutions is the set of "roots" of the differential operator L.
Theorem 5 (Principle of Superposition). If y_{1} and y_{2} are solutions to

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then $c_{1} y_{1}+c_{2} y_{2}$ is also a solution for $c_{1}, c_{2} \in \mathbb{R}$. In other words, if $L\left[y_{1}\right]=L\left[y_{2}\right]=0$, then $L\left[c_{1} y_{1}+c_{2} y_{2}\right]=0$ for all $c_{1}, c_{2} \in \mathbb{R}$.

Proof. For any functions y_{1}, y_{2} and $c_{1}, c_{2} \in \mathbb{R}$, we have

$$
\begin{aligned}
L\left[c_{1} y_{1}+c_{2} y_{2}\right] & =\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+p(t)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+q(t)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =c_{1}\left(y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right)+c_{2}\left(y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}\right) \\
& =c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right]
\end{aligned}
$$

which proves the theorem.
Example 6. Note that the superposition property holds for any linear differential equations. Consider a nonlinear equation $2 y^{\prime} y=1$. Then, $y_{1}(t)=\sqrt{t}$ and $y_{2}(t)=\sqrt{t+1}$ are solutions. But, one can see that $c_{1} y_{1}+c_{2} y_{2}$ is not a solution for any $c_{1}, c_{2} \neq 0$.

For a 2nd linear equation, we can find infinitely many solutions if we know two different solutions. A natural question is if having two solutions is enough. This is the case if the two solutions are "truely" different.

Definition 7. For two functions $y_{1}(t)$ and $y_{2}(t)$, the Wronskian of y_{1} and y_{2} is a function of t defined by

$$
W\left[y_{1}, y_{2}\right](t)=\operatorname{det}\left(\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

Example 8. If $y_{1}(t)=e^{-t}$ and $y_{2}(t)=e^{-3 t}$, then

$$
W\left[y_{1}, y_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
e^{-t} & e^{-3 t} \\
-e^{-t} & -3 e^{-3 t}
\end{array}\right)=e^{-t} e^{-3 t}-3 e^{-t} e^{-3 t}=-2 e^{-4 t}
$$

Theorem 9. Let y_{1} and y_{2} be solutions to

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where $p(t), q(t)$ are continuous on an open interval $I=(\alpha, \beta)$. Then, every solution to the equation has the form $\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ for some $c_{1}, c_{2} \in \mathbb{R}$ if and only if

$$
W\left[y_{1}, y_{2}\right]\left(t_{0}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right) \neq 0
$$

for some $t_{0} \in I$.

Definition 10. Let y_{1} and y_{2} be solutions to

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where $p(t), q(t)$ are continuous on an open interval $I=(\alpha, \beta)$. A set $\left\{y_{1}, y_{2}\right\}$ is called a fundamental set of solutions if $W\left[y_{1}, y_{2}\right]\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$. In this case,

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

is called the general solution.
Example 11. Consider $y^{\prime \prime}+4 y^{\prime}+3 y=0$ with $y(0)=3$ and $y^{\prime}(0)=-5$. The characteristic equation is $r^{2}+4 r+3=(r+1)(r+3)=0$. Thus, $y_{1}(t)=e^{-t}$ and $y_{2}(t)=e^{-3 t}$ are solutions to the equation. Since

$$
W\left[y_{1}, y_{2}\right](t)=-2 e^{-4 t} \neq 0
$$

for all $t \in \mathbb{R},\left\{e^{-t}, e^{-3 t}\right\}$ is a fundamental set of solutions and

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-3 t}
$$

is the general solution.
Theorem 12. Let y_{1} and y_{2} be solutions to

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where $p(t), q(t)$ are continuous on an open interval $I=(\alpha, \beta)$. If

$$
\begin{array}{ll}
y_{1}\left(t_{0}\right)=1, & y_{1}^{\prime}\left(t_{0}\right)=0 \\
y_{2}\left(t_{0}\right)=0, & y_{2}^{\prime}\left(t_{0}\right)=1
\end{array}
$$

for some $t_{0} \in I$, then $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of solutions.
Example 13. Consider $y^{\prime \prime}-y=0$. It is easy to see that e^{t}, e^{-t} are solutions. We also have seen that $y_{1}(t)=\cosh (t)$ and $y_{2}(t)=\sinh (t)$ are solutions. Since

$$
\begin{array}{ll}
y_{1}\left(t_{0}\right)=1, & y_{1}^{\prime}\left(t_{0}\right)=0 \\
y_{2}\left(t_{0}\right)=0, & y_{2}^{\prime}\left(t_{0}\right)=1
\end{array}
$$

they form a fundamental set of solutions.

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

