
Math 285 Lecture Note: Week 3

Daesung Kim

Lecture 7. Existence and Uniqueness Theorems (Sec 2.4)

Theorem 1 (Existence and Uniqueness: Linear case). Consider a first order ODE

y′ + p(t)y = g(t), y(t0) = y0.

Suppose p(t) and g(t) are continuous on an open interval (α, β) that contains t0. Then, there exists a unique
function y = φ(t) that satisfies the ODE with the initial condition.

Proof. Let

µ(t) = exp

(∫ t

t0

p(t) dt

)
,

then µ(t) is well-defined on (α, β), µ(t0) = 1, and

µ(t)y′ + µ(t)p(t)y =
d

dt
(µ(t)y) = µ(t)g(t),

µ(t)y =

∫ t

t0

µ(t)g(t) dt+ C,

y =
1

µ(t)

(∫ t

t0

µ(t)g(t) dt+ C

)
.

Since y(t0) = y0, we get C = y0. Thus,

y =
1

µ(t)

(∫ t

t0

µ(t)g(t) dt+ y0

)
is a unique solution of the linear ODE on (α, β).

Example 2. Consider a linear ODE

(t− 5)y′ + (ln t)y = 2t, y(1) = 2.

Then, we can write

y′ +
ln t

t− 5
y =

2t

t− 5

where p(t) = ln t
t−5 and g(t) = 2t

t−5 . Note that p(t) is continuous on (0, 5) ∪ (5,∞) and g(t) is continuous on
(−∞, 5) ∪ (5,∞). Since the initial condition is given at t = 1, there exists a unique solution φ defined on
the interval (0, 5).

Theorem 3 (Existence and Uniqueness: General case). Consider an ODE

dy

dt
= f(t, y), y(t0) = y0.

Suppose f and ∂f
∂y are continuous in some open rectangle containing (t0, y0) (that is, α < t < β and

γ < y < δ). Then, for t ∈ (t0 − h, t0 + h) ⊂ (α, β), there exists a unique solution y = φ(t) that satisfies the
ODE with the initial value condition on the interval (t0 − h, t0 + h).
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Example 4. Consider a nonlinear ODE

dy

dt
=

1 + t2

2(1− y)
= f(t, y), y(2) = 2.

Note that f and

∂f

∂y
=

1 + t2

2(1− y)2

are continuous if y 6= 1. Thus, the theorem says that there exists a unique solution φ(t) in (2− h, 2 + h) for
some h > 0. Since the ODE is separable, we get

2y − y2 = t+
1

3
t3 + C

and so

y = 1±
√
C − t− 1

3
t3.

By the initial condition, we get

y(2) = 2 = 1±
√
C − 2− 8

3

and so C = 17/3 and

y = 1 +

√
17

3
− t− 1

3
t3.

Note that the solution is defined on (−∞, 2.18576 . . . ).

Example 5 (Finite time blowup). Consider a nonlinear ODE

y′ = 2ty2, y(0) = y0.

It is easy to see that f(t, y) = 2ty2 and

∂f

∂y
= 4ty

are continuous for all t and y. Thus, there exists a unique solution φ(t) defined on (−h, h) for some h > 0.
Note that the solution of the equation is obtained by the separation method: If y0 = 0, then y(t) = 0 is the
unique solution. Suppose y0 6= 0, then

−1

y
= t2 + C

y = − 1

t2 + C

y = − 1

t2 − 1
y0

y =
y0

1− y0t2
.

If y0 < 0, then the solution is defined for all t. Even though f and ∂f
∂y are continuous for all t and y, the

solution is only defined on (− 1√
y0
, 1√

y0
) if y0 > 0. Note that y(t)→∞ if t→ 1/

√
y0.

Example 6 (When the uniqueness fails). Let y′ =
√
y with y(0) = 0, then ∂f

∂y is not continuous when y = 0.
Thus, the theorem does not apply. Indeed, there are infinitely many solutions with the initial condition.
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Lecture 8. Autonomous Equations and Population Dynamics I
(Sec 2.5)

In this section, we consider an ODE of the form

dy

dt
= f(y).

This is called autonomous. In particular, we investigate the equation by looking at f(y). Typical examples
of this type of differential equations are population model.

1 Exponential Growth Model

The easiest population model is the one where f(y) is proportional to y. Consider y′ = ry with y(0) = y0.
The constant r is called the rate of growth (if r > 0) or decline (if r < 0). Then, the solution is y(t) = y0e

rt.

2 Logistic Growth Model

In general, the rate of growth also depends on the population. As the population grows, the resources are
getting short so that the rate of growth decreases according to the population. Consider y′ = h(y)y where

(i) h(y) ∼= r if y is small,

(ii) h(y) decreases as y grows larger,

(iii) h(y) < 0 if y is large enough.

Consider the case where h(y) = r(1− y/K), that is,

y′ = r(1− y/K)y = f(y), y(0) = y0.

K/2 K

y

f(y)

(i) Since f(y) = 0 if y = 0,K, y(t) = 0 and y(t) = K are solutions for the equation. These are called
equilibrium solutions because they are constant as time increases. The roots of f(y) is called critical
points.

(ii) If 0 < y < K, then f(y) > 0. The equation says that y′ > 0 and so y(t) increases. On the other hand,
if y > K, then y′ < 0, which means y(t) decreases. We can describe this on the phase line.
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(iii) If y > K, the graph of the solution is concave up. Since f(y) has its maximum at y = K/2, the graph
of the solution is concave up when 0 < y < K/2 and concave down when K/2 < y < K.

(iv) The existence and uniqueness theorem tells that the solution curves do not intersect each other. Thus,
if the initial condition is y(0) = y0 ∈ (0,K), then y(t) ∈ (0,K) for all t.

(v) By separation method, we can solve the equation:

y =
y0K

y0 + (K − y0)e−rt
.

(vi) If y0 > 0, then y(t)→ K as t→∞. The equilibrium solution y(t) = K is called asymptotically stable
and y(t) = 0 is called an unstable equilibrium solution.
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