Math 285 Lecture Note: Week 2

Daesung Kim

Lecture 4. First-order Linear Equations: Integrating Factors (Sec
2.1)

In this section, we focus on how to find an explicit solution to the first order linear ODE of the form

F(t,y,y') =0
where F' is linear. In other words, we consider the following form

dy

P(t)E

+Q(t)y = R(t)
where P(t), Q(t), R(t) are given functions. For example,

dy 2 _—t
t——y=t .
aw YT

In this case P(t) = t, Q(t) = —1, and R(t) = t?¢~'. The idea of solving this type of ODEs is to use the
product rule:

d dy

@ (ptw) = P + Py,
If we have P’(t) = Q(t), then
dy d
POY 4 =L Pty = RE)

Example 1. Consider an ODE

d
(% + 1)% + 3%y = sint.

Since P(t) = (3 + 1) and Q(t) = 3t?> = P'(t), it follows from the previous argument that

1 —cost+C
= —— [sintdt = —————
Y t3+1/bm 341

is a solution to the ODE.

In general, Q(t) may not be the derivative of P(t). Before dealing with general cases, we consider the
case where P(t) and Q(t) are constants.



Example 2. Consider an ODE

dy
— 4+ 2y =1t.
dt+y

The idea is to multiply a new function pu(t)

dy
wt) o +2u(t)y = tu(t).
If we have p/(t) = 2u(t), then we can apply the previous technique. To find such a function u, we solve the

ODE

1du

pdt
In|u(t)|=2t+C

u(t) = Ce?.

Let pu(t) = €2, then the original ODE can be written as

d d
62t7y 4 2e2ty = 7(62ty) — et

dt dt

ety = /tezt dt

1
= i(tezt - /e2t dt)

1
= Z(Qtezt -t C)

and so
Y= i(Qt — 14 Ce 2.
Example 3. Consider an ODE
Yy — 3y = cost, y(0) = 0.
Solving the auxiliary ODE
du _

= -3
dt s
we let p(t) = e3!. Then the original ODE gives
d
n)y' = 3ultly = 2 (u(t)y) = u(t) cost

e 3ty = /e‘gt costdt
= ie_?’t(sint —3cost)+C
10
1
y(t) = E(sint —3cost) + Ce3t.

Since

we get

1
y(t) = —(sint — 3cost + 3¢e*').



We are ready to discuss how to solve a first order linear ODE

d
P() =] +Q(t)y = R(b).
By dividing P(t) of both sides, we consider a first order linear ODE of the standard form

Yt plty = (1)

where p(t),r(t) are given. We introduce a new function u(t) and multiply by p(t)

w2 () = n(t)r(0)

We want to find p(t) such that

Indeed, we have

and

Therefore, we get

wl
y=—— [ u t) dt
5 [ nor
Example 4. Consider
dy 2 —t
t=2 —y =2t
at VT
Dividing by t of both sides, we get
dy 1 -
=t
at 1/
and so p(t) = —1 and r(t) = te~'. The previous argument yields

ln|u(t)|:/p(t)dt:—/%dtz—ln|t|+0,

where C' is an arbitrary constant. Thus, solutions of the equation are

y(t) = ﬁ [ utorvae
= ét/%te—t dt

zt/e_tdt

=t(—e '+ 0).



Example 5. Consider an ODE

d
(cos t)—y + (sint)y = cos®t, y(0) =2

dt
for t € (—m/2,7/2). As before, we consider
d
u(t)d—? + p(t) tanty = p(t) cos® t.
Then, the auxiliary ODE is
d
d—/: = p(t) tant
In |p(t)| = /tantdt
=In|sect|+ C
p(t) = Csect.
Simply, we put mu(t) = sect then
d d
,u(t)d—i + p(t) tanty = a(u(t)y) = sectcos?t = cost

y = cost/costdt = cost(sint + C).

Since y(0) = C = 2, we obtain

y = (sint + 2) cost.

Lecture 5. First-order Nonlinear Equations: Separable Equations
(Sec 2.2)

In this section, we discuss how to solve nonlinear first order ODEs. Previously, we have seen an ODE of the
form

dy
— = F(y).
iRl
The idea was to bring F(y) to the other side and apply the Chain rule, which leads to
d 1 dy
2@ = 2 _

and so G(y) = ¢+ C. This method indeed works for a more general ODE. Consider a first order ODE of the
form

dy
— =F(t,y).
il GY))
where F(t,y) is a product of functions F;(t) and F5(y). Then,
1 dy
— = Fi(?).
Bya
If we find a function G such that G'(y) = #(y), then
d
Z(Gy) =
7 (GW)

Fl(t)v
mw:/mmw.



Example 6. Consider an ODE

y/: Yy
1423
Then,
ldy z2
ydr 1+23

To apply the chain rule, we find a function G(y) such that

By integrating of the both sides, we get
Gly) =n|y|+ C.
Let C' =0, then

2
1 ; )
Thus, the solution is

y:C|1—|—x3‘%

This method can be understood in terms of differential forms. We can rewrite the previous form of ODEs
as

Y~ R@ERG)

1
) dy = Fi(z) dx

1
—Fi(x)de + ——dy = 0.

So, we simply consider an ODE of the form
M(z)dz = N(y)dy.

In this case, we take integration of both sides with respect to x and y respectively, which yields

/M(m)dx: /N(y)dy.
Such an equation is said to be separable.
Example 7. Consider an ODE
xdr + ye  Tdy = 0, y(0) = 1.
Then,

re®dx = —ydy

/ace’“'dx = —/ydy

1
(x—1)e” = —§y2 +C

v =2(1 —z)e” +C
y=++/2(1 —xz)e* +C.



Since y(0) = 1, the sign is plus and we get

which yields C' = —1. Therefore, the solution is

y=+/2(1—x)e® — 1.

Lecture 6. First-order Nonlinear Equations: Further Discussion
(Sec 2.2, 2.4)

Last time, we have seen that if we have a separable equation y' = F(z)G(y) or M (z)dxz + N(y)dy = 0, then
we can find a solution.

Example 8. Consider

, 2z 2z
oy 4 a2y 1—|—x2y'

Y

Then,

2z

1522 dzx

ydy =

and so y% = 2In(1 + %) + C.

We have seen how to find a solution of an ODE that is separable. In this section, we discuss other cases
where we can find a solution even though the ODE is not separable nor linear.

Example 9 (Homogeneous equations). We call an ODE y' = F(x,y) is homogenous if F(tz,ty) = F(z,y)
for all ¢ # 0. In this case, we can replace F(z,y) with F(1,y/x). Consider an ODE

dy 2%+ zy + 32
de x2 '
This is not separable but we can make it separable by introducing a new variable. Let v = y/x, then the

RHS can be written as

x2+xy+y2

5 =1+0v+02%
x
On the other hands, we have zv = y and so
dv dy
Thus, we get
dv
22 1 2
xdm +v
1 1
——dv=—d
110207 2%

arctan(v) =In|z| + C
v(z) =tan(ln |z| + C)
y(x) =z tan(ln|z| + C).



Example 10 (Bernoulli equations). Consider an ODE

Y +p(t)y = q(t)y".

If n = 0,1, then it is linear so that we can solve it. Suppose n # 0,1. First, y(t) = 0 is a trivial solution.
Suppose y(t) # 0. Dividing y™ of the both sides,

y My +p(t)y' T = q(t).

Let v = y'=", then v/ = (1 — n)y~ "y’ and so the ODE can be written as

v+ p(t)o = g(t),

1—n

I we have

which is solvable. For example, let v/ + v = zy?, then for v =y~
v —v=—x.

Thus,

v:—et/xe*tdt:x—ﬁ—l—i—Cet.
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