Math 285 Lecture Note: Week 2

Daesung Kim

Lecture 4. First-order Linear Equations: Integrating Factors (Sec 2.1)

In this section, we focus on how to find an explicit solution to the first order linear ODE of the form

$$F(t, y, y') = 0$$

where F is linear. In other words, we consider the following form

$$P(t)\frac{dy}{dt} + Q(t)y = R(t)$$

where P(t), Q(t), R(t) are given functions. For example,

$$t\frac{dy}{dt} - y = t^2 e^{-t}.$$

In this case P(t) = t, Q(t) = -1, and $R(t) = t^2 e^{-t}$. The idea of solving this type of ODEs is to use the product rule:

$$\frac{d}{dt}(P(t)y) = P(t)\frac{dy}{dt} + P'(t)y.$$

If we have P'(t) = Q(t), then

$$P(t)\frac{dy}{dt} + Q(t)y = \frac{d}{dt}(P(t)y) = R(t)$$
$$P(t)y = \int R(t) dt$$
$$y = \frac{1}{P(t)} \int R(t) dt.$$

Example 1. Consider an ODE

$$(t^3 + 1)\frac{dy}{dt} + 3t^2y = \sin t.$$

Since $P(t) = (t^3 + 1)$ and $Q(t) = 3t^2 = P'(t)$, it follows from the previous argument that

$$y = \frac{1}{t^3 + 1} \int \sin t \, dt = \frac{-\cos t + C}{t^3 + 1}$$

is a solution to the ODE.

In general, Q(t) may not be the derivative of P(t). Before dealing with general cases, we consider the case where P(t) and Q(t) are constants.

Example 2. Consider an ODE

$$\frac{dy}{dt} + 2y = t.$$

The idea is to multiply a new function $\mu(t)$

$$\mu(t)\frac{dy}{dt} + 2\mu(t)y = t\mu(t).$$

If we have $\mu'(t) = 2\mu(t)$, then we can apply the previous technique. To find such a function μ , we solve the ODE

$$\frac{1}{\mu}\frac{d\mu}{dt} = 2$$
$$\ln|\mu(t)| = 2t + C$$
$$\mu(t) = Ce^{2t}.$$

Let $\mu(t) = e^{2t}$, then the original ODE can be written as

$$e^{2t}\frac{dy}{dt} + 2e^{2t}y = \frac{d}{dt}(e^{2t}y) = te^{2t}$$
$$e^{2t}y = \int te^{2t} dt$$
$$= \frac{1}{2}(te^{2t} - \int e^{2t} dt)$$
$$= \frac{1}{4}(2te^{2t} - e^{2t} + C)$$

and so

$$y = \frac{1}{4}(2t - 1 + Ce^{-2t}).$$

Example 3. Consider an ODE

$$y' - 3y = \cos t, \qquad y(0) = 0.$$

Solving the auxiliary ODE

$$\frac{d\mu}{dt} = -3\mu,$$

we let $\mu(t) = e^{-3t}$. Then the original ODE gives

$$\mu(t)y' - 3\mu(t)y = \frac{d}{dt}(\mu(t)y) = \mu(t)\cos t$$
$$e^{-3t}y = \int e^{-3t}\cos t \, dt$$
$$= \frac{1}{10}e^{-3t}(\sin t - 3\cos t) + C$$
$$y(t) = \frac{1}{10}(\sin t - 3\cos t) + Ce^{3t}.$$

Since

$$y(0) = -\frac{3}{10} + C = 0,$$

we get

$$y(t) = \frac{1}{10}(\sin t - 3\cos t + 3e^{3t}).$$

We are ready to discuss how to solve a first order linear ODE

$$P(t)\frac{dy}{dt} + Q(t)y = R(t)$$

By dividing P(t) of both sides, we consider a first order linear ODE of the standard form

$$\frac{dy}{dt} + p(t)y = r(t)$$

where p(t), r(t) are given. We introduce a new function $\mu(t)$ and multiply by $\mu(t)$

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y = \mu(t)r(t).$$

We want to find $\mu(t)$ such that

$$\frac{d}{dt}\mu(t) = \mu(t)p(t)$$

Indeed, we have

$$\frac{1}{\mu(t)}\frac{d}{dt}\mu(t) = \frac{d}{dt}(\ln|\mu(t)|) = p(t)$$

and

$$\ln|\mu(t)| = \int p(t) \, dt.$$

Let $\mu(t) = \exp(\int p(t) dt)$, then $\mu'(t) = \mu(t)p(t)$. Thus,

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y = \mu(t)\frac{dy}{dt} + \mu'(t)y = (\mu(t)y)' = \mu(t)r(t).$$

Therefore, we get

$$y = \frac{1}{\mu(t)} \int \mu(t) r(t) \, dt$$

Example 4. Consider

$$t\frac{dy}{dt} - y = t^2 e^{-t}.$$

Dividing by t of both sides, we get

$$\frac{dy}{dt} - \frac{1}{t}y = te^{-t}$$

and so $p(t) = -\frac{1}{t}$ and $r(t) = te^{-t}$. The previous argument yields

$$\ln |\mu(t)| = \int p(t) \, dt = -\int \frac{1}{t} \, dt = -\ln|t| + C,$$

$$\mu(t) = \frac{C}{t}$$

where C is an arbitrary constant. Thus, solutions of the equation are

$$y(t) = \frac{1}{\mu(t)} \int \mu(t)r(t) dt$$
$$= \frac{1}{C}t \int \frac{C}{t}te^{-t} dt$$
$$= t \int e^{-t} dt$$
$$= t(-e^{-t} + C).$$

Example 5. Consider an ODE

$$(\cos t)\frac{dy}{dt} + (\sin t)y = \cos^3 t, \qquad y(0) = 2$$

for $t \in (-\pi/2, \pi/2)$. As before, we consider

$$\mu(t)\frac{dy}{dt} + \mu(t)\tan ty = \mu(t)\cos^2 t.$$

Then, the auxiliary ODE is

$$\frac{d\mu}{dt} = \mu(t) \tan t$$
$$\ln |\mu(t)| = \int \tan t \, dt$$
$$= \ln |\sec t| + C$$
$$\mu(t) = C \sec t.$$

Simply, we put $mu(t) = \sec t$ then

$$\mu(t)\frac{dy}{dt} + \mu(t)\tan ty = \frac{d}{dt}(\mu(t)y) = \sec t \cos^2 t = \cos t$$
$$y = \cos t \int \cos t \, dt = \cos t (\sin t + C).$$

Since y(0) = C = 2, we obtain

$$y = (\sin t + 2)\cos t.$$

Lecture 5. First-order Nonlinear Equations: Separable Equations (Sec 2.2)

In this section, we discuss how to solve nonlinear first order ODEs. Previously, we have seen an ODE of the form

$$\frac{dy}{dt} = F(y).$$

The idea was to bring F(y) to the other side and apply the Chain rule, which leads to

$$\frac{d}{dt}(G(y)) = \frac{1}{F(y)}\frac{dy}{dt} = 1$$

and so G(y) = t + C. This method indeed works for a more general ODE. Consider a first order ODE of the form

$$\frac{dy}{dt} = F(t, y).$$

where F(t, y) is a product of functions $F_1(t)$ and $F_2(y)$. Then,

$$\frac{1}{F_2(y)}\frac{dy}{dt} = F_1(t)$$

If we find a function G such that $G'(y) = \frac{1}{F_2(y)}$, then

$$\frac{d}{dt}(G(y)) = F_1(t),$$
$$G(y) = \int F_1(t) dt.$$

Example 6. Consider an ODE

$$y' = \frac{x^2 y}{1 + x^3}.$$

Then,

$$\frac{1}{y}\frac{dy}{dx} = \frac{x^2}{1+x^3}.$$

To apply the chain rule, we find a function G(y) such that

$$G'(y) = \frac{1}{y}.$$

By integrating of the both sides, we get

$$G(y) = \ln|y| + C.$$

Let C = 0, then

$$\ln|y| = \int \frac{x^2}{1+x^3} \, dx = \frac{1}{3} \ln|1+x^3| + C = \ln(e^C|1+x^3|^{\frac{1}{3}}).$$

Thus, the solution is

$$y = C|1 + x^3|^{\frac{1}{3}}$$

This method can be understood in terms of differential forms. We can rewrite the previous form of ODEs as

$$\frac{dy}{dx} = F_1(x)F_2(y)$$
$$\frac{1}{F_2(y)} dy = F_1(x) dx$$
$$-F_1(x) dx + \frac{1}{F_2(y)} dy = 0.$$

So, we simply consider an ODE of the form

$$M(x)\,dx = N(y)\,dy.$$

In this case, we take integration of both sides with respect to x and y respectively, which yields

$$\int M(x)\,dx = \int N(y)\,dy.$$

Such an equation is said to be separable.

Example 7. Consider an ODE

$$xdx + ye^{-x}dy = 0, \qquad y(0) = 1.$$

Then,

$$xe^{x}dx = -ydy$$

$$\int xe^{x}dx = -\int ydy$$

$$(x-1)e^{x} = -\frac{1}{2}y^{2} + C$$

$$y^{2} = 2(1-x)e^{x} + C$$

$$y = \pm\sqrt{2(1-x)e^{x} + C}.$$

Since y(0) = 1, the sign is plus and we get

$$y(0) = 1 = \sqrt{2+C},$$

which yields C = -1. Therefore, the solution is

$$y = \sqrt{2(1-x)e^x - 1}.$$

Lecture 6. First-order Nonlinear Equations: Further Discussion (Sec 2.2, 2.4)

Last time, we have seen that if we have a separable equation y' = F(x)G(y) or M(x)dx + N(y)dy = 0, then we can find a solution.

Example 8. Consider

$$y' = \frac{2x}{y + x^2y} = \frac{2x}{1 + x^2}y$$

Then,

$$ydy = \frac{2x}{1+x^2}dx$$

and so $y^2 = 2\ln(1+x^2) + C$.

We have seen how to find a solution of an ODE that is separable. In this section, we discuss other cases where we can find a solution even though the ODE is not separable nor linear.

Example 9 (Homogeneous equations). We call an ODE y' = F(x, y) is homogenous if F(tx, ty) = F(x, y) for all $t \neq 0$. In this case, we can replace F(x, y) with F(1, y/x). Consider an ODE

$$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}.$$

This is not separable but we can make it separable by introducing a new variable. Let v = y/x, then the RHS can be written as

$$\frac{x^2 + xy + y^2}{x^2} = 1 + v + v^2$$

On the other hands, we have xv = y and so

$$v + x\frac{dv}{dx} = \frac{dy}{dx}.$$

Thus, we get

$$x\frac{dv}{dx} = 1 + v^2$$

$$\frac{1}{1+v^2}dv = \frac{1}{x}dx$$

$$\arctan(v) = \ln|x| + C$$

$$v(x) = \tan(\ln|x| + C)$$

$$y(x) = x \tan(\ln|x| + C).$$

Example 10 (Bernoulli equations). Consider an ODE

$$y' + p(t)y = q(t)y^n.$$

If n = 0, 1, then it is linear so that we can solve it. Suppose $n \neq 0, 1$. First, y(t) = 0 is a trivial solution. Suppose $y(t) \neq 0$. Dividing y^n of the both sides,

$$y^{-n}y' + p(t)y^{1-n} = q(t).$$

Let $v = y^{1-n}$, then $v' = (1-n)y^{-n}y'$ and so the ODE can be written as

$$\frac{1}{1-n}v' + p(t)v = q(t),$$

which is solvable. For example, let $y' + y = xy^2$, then for $v = y^{-1}$ we have

v' - v = -x.

Thus,

$$v = -e^t \int x e^{-t} dt = x + 1 + Ce^t.$$

References

[BD] Boyce and DiPrima, *Elementary Differential Equations and Boundary Value Problems*, 10th Edition, Wiley

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN E-mail address: daesungk@illinois.edu