
Math 285 Lecture Note: Week 2

Daesung Kim

Lecture 4. First-order Linear Equations: Integrating Factors (Sec
2.1)

In this section, we focus on how to find an explicit solution to the first order linear ODE of the form

F (t, y, y′) = 0

where F is linear. In other words, we consider the following form

P (t)
dy

dt
+Q(t)y = R(t)

where P (t), Q(t), R(t) are given functions. For example,

t
dy

dt
− y = t2e−t.

In this case P (t) = t, Q(t) = −1, and R(t) = t2e−t. The idea of solving this type of ODEs is to use the
product rule:

d

dt
(P (t)y) = P (t)

dy

dt
+ P ′(t)y.

If we have P ′(t) = Q(t), then

P (t)
dy

dt
+Q(t)y =

d

dt
(P (t)y) = R(t)

P (t)y =

∫
R(t) dt

y =
1

P (t)

∫
R(t) dt.

Example 1. Consider an ODE

(t3 + 1)
dy

dt
+ 3t2y = sin t.

Since P (t) = (t3 + 1) and Q(t) = 3t2 = P ′(t), it follows from the previous argument that

y =
1

t3 + 1

∫
sin t dt =

− cos t+ C

t3 + 1

is a solution to the ODE.

In general, Q(t) may not be the derivative of P (t). Before dealing with general cases, we consider the
case where P (t) and Q(t) are constants.
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Example 2. Consider an ODE

dy

dt
+ 2y = t.

The idea is to multiply a new function µ(t)

µ(t)
dy

dt
+ 2µ(t)y = tµ(t).

If we have µ′(t) = 2µ(t), then we can apply the previous technique. To find such a function µ, we solve the
ODE

1

µ

dµ

dt
= 2

ln |µ(t)| = 2t+ C

µ(t) = Ce2t.

Let µ(t) = e2t, then the original ODE can be written as

e2t
dy

dt
+ 2e2ty =

d

dt
(e2ty) = te2t

e2ty =

∫
te2t dt

=
1

2
(te2t −

∫
e2t dt)

=
1

4
(2te2t − e2t + C)

and so

y =
1

4
(2t− 1 + Ce−2t).

Example 3. Consider an ODE

y′ − 3y = cos t, y(0) = 0.

Solving the auxiliary ODE

dµ

dt
= −3µ,

we let µ(t) = e−3t. Then the original ODE gives

µ(t)y′ − 3µ(t)y =
d

dt
(µ(t)y) = µ(t) cos t

e−3ty =

∫
e−3t cos t dt

=
1

10
e−3t(sin t− 3 cos t) + C

y(t) =
1

10
(sin t− 3 cos t) + Ce3t.

Since

y(0) = − 3

10
+ C = 0,

we get

y(t) =
1

10
(sin t− 3 cos t+ 3e3t).
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We are ready to discuss how to solve a first order linear ODE

P (t)
dy

dt
+Q(t)y = R(t).

By dividing P (t) of both sides, we consider a first order linear ODE of the standard form

dy

dt
+ p(t)y = r(t)

where p(t), r(t) are given. We introduce a new function µ(t) and multiply by µ(t)

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)r(t).

We want to find µ(t) such that

d

dt
µ(t) = µ(t)p(t).

Indeed, we have

1

µ(t)

d

dt
µ(t) =

d

dt
(ln |µ(t)|) = p(t)

and

ln |µ(t)| =
∫
p(t) dt.

Let µ(t) = exp(
∫
p(t) dt), then µ′(t) = µ(t)p(t). Thus,

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)

dy

dt
+ µ′(t)y = (µ(t)y)′ = µ(t)r(t).

Therefore, we get

y =
1

µ(t)

∫
µ(t)r(t) dt.

Example 4. Consider

t
dy

dt
− y = t2e−t.

Dividing by t of both sides, we get

dy

dt
− 1

t
y = te−t

and so p(t) = − 1
t and r(t) = te−t. The previous argument yields

ln |µ(t)| =
∫
p(t) dt = −

∫
1

t
dt = − ln |t|+ C,

µ(t) =
C

t

where C is an arbitrary constant. Thus, solutions of the equation are

y(t) =
1

µ(t)

∫
µ(t)r(t) dt

=
1

C
t

∫
C

t
te−t dt

= t

∫
e−t dt

= t(−e−t + C).
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Example 5. Consider an ODE

(cos t)
dy

dt
+ (sin t)y = cos3 t, y(0) = 2

for t ∈ (−π/2, π/2). As before, we consider

µ(t)
dy

dt
+ µ(t) tan ty = µ(t) cos2 t.

Then, the auxiliary ODE is

dµ

dt
= µ(t) tan t

ln |µ(t)| =
∫

tan t dt

= ln | sec t|+ C

µ(t) = C sec t.

Simply, we put mu(t) = sec t then

µ(t)
dy

dt
+ µ(t) tan ty =

d

dt
(µ(t)y) = sec t cos2 t = cos t

y = cos t

∫
cos t dt = cos t(sin t+ C).

Since y(0) = C = 2, we obtain

y = (sin t+ 2) cos t.

Lecture 5. First-order Nonlinear Equations: Separable Equations
(Sec 2.2)

In this section, we discuss how to solve nonlinear first order ODEs. Previously, we have seen an ODE of the
form

dy

dt
= F (y).

The idea was to bring F (y) to the other side and apply the Chain rule, which leads to

d

dt
(G(y)) =

1

F (y)

dy

dt
= 1

and so G(y) = t+C. This method indeed works for a more general ODE. Consider a first order ODE of the
form

dy

dt
= F (t, y).

where F (t, y) is a product of functions F1(t) and F2(y). Then,

1

F2(y)

dy

dt
= F1(t).

If we find a function G such that G′(y) = 1
F2(y)

, then

d

dt
(G(y)) = F1(t),

G(y) =

∫
F1(t) dt.
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Example 6. Consider an ODE

y′ =
x2y

1 + x3
.

Then,

1

y

dy

dx
=

x2

1 + x3
.

To apply the chain rule, we find a function G(y) such that

G′(y) =
1

y
.

By integrating of the both sides, we get

G(y) = ln |y|+ C.

Let C = 0, then

ln |y| =
∫

x2

1 + x3
dx =

1

3
ln |1 + x3|+ C = ln(eC |1 + x3| 13 ).

Thus, the solution is

y = C|1 + x3| 13

This method can be understood in terms of differential forms. We can rewrite the previous form of ODEs
as

dy

dx
= F1(x)F2(y)

1

F2(y)
dy = F1(x) dx

−F1(x) dx+
1

F2(y)
dy = 0.

So, we simply consider an ODE of the form

M(x) dx = N(y) dy.

In this case, we take integration of both sides with respect to x and y respectively, which yields∫
M(x) dx =

∫
N(y) dy.

Such an equation is said to be separable.

Example 7. Consider an ODE

xdx+ ye−xdy = 0, y(0) = 1.

Then,

xexdx = −ydy∫
xexdx = −

∫
ydy

(x− 1)ex = −1

2
y2 + C

y2 = 2(1− x)ex + C

y = ±
√

2(1− x)ex + C.
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Since y(0) = 1, the sign is plus and we get

y(0) = 1 =
√

2 + C,

which yields C = −1. Therefore, the solution is

y =
√

2(1− x)ex − 1.

Lecture 6. First-order Nonlinear Equations: Further Discussion
(Sec 2.2, 2.4)

Last time, we have seen that if we have a separable equation y′ = F (x)G(y) or M(x)dx+N(y)dy = 0, then
we can find a solution.

Example 8. Consider

y′ =
2x

y + x2y
=

2x

1 + x2
y.

Then,

ydy =
2x

1 + x2
dx

and so y2 = 2 ln(1 + x2) + C.

We have seen how to find a solution of an ODE that is separable. In this section, we discuss other cases
where we can find a solution even though the ODE is not separable nor linear.

Example 9 (Homogeneous equations). We call an ODE y′ = F (x, y) is homogenous if F (tx, ty) = F (x, y)
for all t 6= 0. In this case, we can replace F (x, y) with F (1, y/x). Consider an ODE

dy

dx
=
x2 + xy + y2

x2
.

This is not separable but we can make it separable by introducing a new variable. Let v = y/x, then the
RHS can be written as

x2 + xy + y2

x2
= 1 + v + v2.

On the other hands, we have xv = y and so

v + x
dv

dx
=
dy

dx
.

Thus, we get

x
dv

dx
= 1 + v2

1

1 + v2
dv =

1

x
dx

arctan(v) = ln |x|+ C

v(x) = tan(ln |x|+ C)

y(x) =x tan(ln |x|+ C).
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Example 10 (Bernoulli equations). Consider an ODE

y′ + p(t)y = q(t)yn.

If n = 0, 1, then it is linear so that we can solve it. Suppose n 6= 0, 1. First, y(t) = 0 is a trivial solution.
Suppose y(t) 6= 0. Dividing yn of the both sides,

y−ny′ + p(t)y1−n = q(t).

Let v = y1−n, then v′ = (1− n)y−ny′ and so the ODE can be written as

1

1− n
v′ + p(t)v = q(t),

which is solvable. For example, let y′ + y = xy2, then for v = y−1 we have

v′ − v = −x.

Thus,

v = −et
∫
xe−t dt = x+ 1 + Cet.
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