Math 285 Lecture Note: Week 2

Daesung Kim

Lecture 4. First-order Linear Equations: Integrating Factors (Sec 2.1)

In this section, we focus on how to find an explicit solution to the first order linear ODE of the form

$$
F\left(t, y, y^{\prime}\right)=0
$$

where F is linear. In other words, we consider the following form

$$
P(t) \frac{d y}{d t}+Q(t) y=R(t)
$$

where $P(t), Q(t), R(t)$ are given functions. For example,

$$
t \frac{d y}{d t}-y=t^{2} e^{-t}
$$

In this case $P(t)=t, Q(t)=-1$, and $R(t)=t^{2} e^{-t}$. The idea of solving this type of ODEs is to use the product rule:

$$
\frac{d}{d t}(P(t) y)=P(t) \frac{d y}{d t}+P^{\prime}(t) y .
$$

If we have $P^{\prime}(t)=Q(t)$, then

$$
\begin{aligned}
P(t) \frac{d y}{d t}+Q(t) y & =\frac{d}{d t}(P(t) y)=R(t) \\
P(t) y & =\int R(t) d t \\
y & =\frac{1}{P(t)} \int R(t) d t .
\end{aligned}
$$

Example 1. Consider an ODE

$$
\left(t^{3}+1\right) \frac{d y}{d t}+3 t^{2} y=\sin t
$$

Since $P(t)=\left(t^{3}+1\right)$ and $Q(t)=3 t^{2}=P^{\prime}(t)$, it follows from the previous argument that

$$
y=\frac{1}{t^{3}+1} \int \sin t d t=\frac{-\cos t+C}{t^{3}+1}
$$

is a solution to the ODE.
In general, $Q(t)$ may not be the derivative of $P(t)$. Before dealing with general cases, we consider the case where $P(t)$ and $Q(t)$ are constants.

Example 2. Consider an ODE

$$
\frac{d y}{d t}+2 y=t
$$

The idea is to multiply a new function $\mu(t)$

$$
\mu(t) \frac{d y}{d t}+2 \mu(t) y=t \mu(t)
$$

If we have $\mu^{\prime}(t)=2 \mu(t)$, then we can apply the previous technique. To find such a function μ, we solve the ODE

$$
\begin{aligned}
\frac{1}{\mu} \frac{d \mu}{d t} & =2 \\
\ln |\mu(t)| & =2 t+C \\
\mu(t) & =C e^{2 t} .
\end{aligned}
$$

Let $\mu(t)=e^{2 t}$, then the original ODE can be written as

$$
\begin{aligned}
e^{2 t} \frac{d y}{d t}+2 e^{2 t} y & =\frac{d}{d t}\left(e^{2 t} y\right)=t e^{2 t} \\
e^{2 t} y & =\int t e^{2 t} d t \\
& =\frac{1}{2}\left(t e^{2 t}-\int e^{2 t} d t\right) \\
& =\frac{1}{4}\left(2 t e^{2 t}-e^{2 t}+C\right)
\end{aligned}
$$

and so

$$
y=\frac{1}{4}\left(2 t-1+C e^{-2 t}\right)
$$

Example 3. Consider an ODE

$$
y^{\prime}-3 y=\cos t, \quad y(0)=0
$$

Solving the auxiliary ODE

$$
\frac{d \mu}{d t}=-3 \mu
$$

we let $\mu(t)=e^{-3 t}$. Then the original ODE gives

$$
\begin{aligned}
\mu(t) y^{\prime}-3 \mu(t) y & =\frac{d}{d t}(\mu(t) y)=\mu(t) \cos t \\
e^{-3 t} y & =\int e^{-3 t} \cos t d t \\
& =\frac{1}{10} e^{-3 t}(\sin t-3 \cos t)+C \\
y(t) & =\frac{1}{10}(\sin t-3 \cos t)+C e^{3 t}
\end{aligned}
$$

Since

$$
y(0)=-\frac{3}{10}+C=0
$$

we get

$$
y(t)=\frac{1}{10}\left(\sin t-3 \cos t+3 e^{3 t}\right)
$$

We are ready to discuss how to solve a first order linear ODE

$$
P(t) \frac{d y}{d t}+Q(t) y=R(t)
$$

By dividing $P(t)$ of both sides, we consider a first order linear ODE of the standard form

$$
\frac{d y}{d t}+p(t) y=r(t)
$$

where $p(t), r(t)$ are given. We introduce a new function $\mu(t)$ and multiply by $\mu(t)$

$$
\mu(t) \frac{d y}{d t}+\mu(t) p(t) y=\mu(t) r(t)
$$

We want to find $\mu(t)$ such that

$$
\frac{d}{d t} \mu(t)=\mu(t) p(t)
$$

Indeed, we have

$$
\frac{1}{\mu(t)} \frac{d}{d t} \mu(t)=\frac{d}{d t}(\ln |\mu(t)|)=p(t)
$$

and

$$
\ln |\mu(t)|=\int p(t) d t
$$

Let $\mu(t)=\exp \left(\int p(t) d t\right)$, then $\mu^{\prime}(t)=\mu(t) p(t)$. Thus,

$$
\mu(t) \frac{d y}{d t}+\mu(t) p(t) y=\mu(t) \frac{d y}{d t}+\mu^{\prime}(t) y=(\mu(t) y)^{\prime}=\mu(t) r(t)
$$

Therefore, we get

$$
y=\frac{1}{\mu(t)} \int \mu(t) r(t) d t .
$$

Example 4. Consider

$$
t \frac{d y}{d t}-y=t^{2} e^{-t}
$$

Dividing by t of both sides, we get

$$
\frac{d y}{d t}-\frac{1}{t} y=t e^{-t}
$$

and so $p(t)=-\frac{1}{t}$ and $r(t)=t e^{-t}$. The previous argument yields

$$
\begin{aligned}
\ln |\mu(t)| & =\int p(t) d t=-\int \frac{1}{t} d t=-\ln |t|+C \\
\mu(t) & =\frac{C}{t}
\end{aligned}
$$

where C is an arbitrary constant. Thus, solutions of the equation are

$$
\begin{aligned}
y(t) & =\frac{1}{\mu(t)} \int \mu(t) r(t) d t \\
& =\frac{1}{C} t \int \frac{C}{t} t e^{-t} d t \\
& =t \int e^{-t} d t \\
& =t\left(-e^{-t}+C\right)
\end{aligned}
$$

Example 5. Consider an ODE

$$
(\cos t) \frac{d y}{d t}+(\sin t) y=\cos ^{3} t, \quad y(0)=2
$$

for $t \in(-\pi / 2, \pi / 2)$. As before, we consider

$$
\mu(t) \frac{d y}{d t}+\mu(t) \tan t y=\mu(t) \cos ^{2} t
$$

Then, the auxiliary ODE is

$$
\begin{aligned}
\frac{d \mu}{d t} & =\mu(t) \tan t \\
\ln |\mu(t)| & =\int \tan t d t \\
& =\ln |\sec t|+C \\
\mu(t) & =C \sec t .
\end{aligned}
$$

Simply, we put $m u(t)=\sec t$ then

$$
\begin{aligned}
\mu(t) \frac{d y}{d t}+\mu(t) \tan t y & =\frac{d}{d t}(\mu(t) y)=\sec t \cos ^{2} t=\cos t \\
y & =\cos t \int \cos t d t=\cos t(\sin t+C)
\end{aligned}
$$

Since $y(0)=C=2$, we obtain

$$
y=(\sin t+2) \cos t .
$$

Lecture 5. First-order Nonlinear Equations: Separable Equations (Sec 2.2)

In this section, we discuss how to solve nonlinear first order ODEs. Previously, we have seen an ODE of the form

$$
\frac{d y}{d t}=F(y) .
$$

The idea was to bring $F(y)$ to the other side and apply the Chain rule, which leads to

$$
\frac{d}{d t}(G(y))=\frac{1}{F(y)} \frac{d y}{d t}=1
$$

and so $G(y)=t+C$. This method indeed works for a more general ODE. Consider a first order ODE of the form

$$
\frac{d y}{d t}=F(t, y) .
$$

where $F(t, y)$ is a product of functions $F_{1}(t)$ and $F_{2}(y)$. Then,

$$
\frac{1}{F_{2}(y)} \frac{d y}{d t}=F_{1}(t) .
$$

If we find a function G such that $G^{\prime}(y)=\frac{1}{F_{2}(y)}$, then

$$
\begin{aligned}
\frac{d}{d t}(G(y)) & =F_{1}(t) \\
G(y) & =\int F_{1}(t) d t
\end{aligned}
$$

Example 6. Consider an ODE

$$
y^{\prime}=\frac{x^{2} y}{1+x^{3}}
$$

Then,

$$
\frac{1}{y} \frac{d y}{d x}=\frac{x^{2}}{1+x^{3}}
$$

To apply the chain rule, we find a function $G(y)$ such that

$$
G^{\prime}(y)=\frac{1}{y}
$$

By integrating of the both sides, we get

$$
G(y)=\ln |y|+C
$$

Let $C=0$, then

$$
\ln |y|=\int \frac{x^{2}}{1+x^{3}} d x=\frac{1}{3} \ln \left|1+x^{3}\right|+C=\ln \left(e^{C}\left|1+x^{3}\right|^{\frac{1}{3}}\right)
$$

Thus, the solution is

$$
y=C\left|1+x^{3}\right|^{\frac{1}{3}}
$$

This method can be understood in terms of differential forms. We can rewrite the previous form of ODEs as

$$
\begin{gathered}
\frac{d y}{d x}=F_{1}(x) F_{2}(y) \\
\frac{1}{F_{2}(y)} d y=F_{1}(x) d x \\
-F_{1}(x) d x+\frac{1}{F_{2}(y)} d y=0
\end{gathered}
$$

So, we simply consider an ODE of the form

$$
M(x) d x=N(y) d y
$$

In this case, we take integration of both sides with respect to x and y respectively, which yields

$$
\int M(x) d x=\int N(y) d y
$$

Such an equation is said to be separable.
Example 7. Consider an ODE

$$
x d x+y e^{-x} d y=0, \quad y(0)=1
$$

Then,

$$
\begin{aligned}
x e^{x} d x & =-y d y \\
\int x e^{x} d x & =-\int y d y \\
(x-1) e^{x} & =-\frac{1}{2} y^{2}+C \\
y^{2} & =2(1-x) e^{x}+C \\
y & = \pm \sqrt{2(1-x) e^{x}+C}
\end{aligned}
$$

Since $y(0)=1$, the sign is plus and we get

$$
y(0)=1=\sqrt{2+C}
$$

which yields $C=-1$. Therefore, the solution is

$$
y=\sqrt{2(1-x) e^{x}-1}
$$

Lecture 6. First-order Nonlinear Equations: Further Discussion (Sec 2.2, 2.4)

Last time, we have seen that if we have a separable equation $y^{\prime}=F(x) G(y)$ or $M(x) d x+N(y) d y=0$, then we can find a solution.

Example 8. Consider

$$
y^{\prime}=\frac{2 x}{y+x^{2} y}=\frac{2 x}{1+x^{2}} y
$$

Then,

$$
y d y=\frac{2 x}{1+x^{2}} d x
$$

and so $y^{2}=2 \ln \left(1+x^{2}\right)+C$.
We have seen how to find a solution of an ODE that is separable. In this section, we discuss other cases where we can find a solution even though the ODE is not separable nor linear.

Example 9 (Homogeneous equations). We call an ODE $y^{\prime}=F(x, y)$ is homogenous if $F(t x, t y)=F(x, y)$ for all $t \neq 0$. In this case, we can replace $F(x, y)$ with $F(1, y / x)$. Consider an ODE

$$
\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}
$$

This is not separable but we can make it separable by introducing a new variable. Let $v=y / x$, then the RHS can be written as

$$
\frac{x^{2}+x y+y^{2}}{x^{2}}=1+v+v^{2}
$$

On the other hands, we have $x v=y$ and so

$$
v+x \frac{d v}{d x}=\frac{d y}{d x}
$$

Thus, we get

$$
\begin{gathered}
x \frac{d v}{d x}=1+v^{2} \\
\frac{1}{1+v^{2}} d v=\frac{1}{x} d x \\
\arctan (v)=\ln |x|+C \\
v(x)=\tan (\ln |x|+C) \\
y(x)=x \tan (\ln |x|+C) .
\end{gathered}
$$

Example 10 (Bernoulli equations). Consider an ODE

$$
y^{\prime}+p(t) y=q(t) y^{n} .
$$

If $n=0,1$, then it is linear so that we can solve it. Suppose $n \neq 0,1$. First, $y(t)=0$ is a trivial solution. Suppose $y(t) \neq 0$. Dividing y^{n} of the both sides,

$$
y^{-n} y^{\prime}+p(t) y^{1-n}=q(t)
$$

Let $v=y^{1-n}$, then $v^{\prime}=(1-n) y^{-n} y^{\prime}$ and so the ODE can be written as

$$
\frac{1}{1-n} v^{\prime}+p(t) v=q(t)
$$

which is solvable. For example, let $y^{\prime}+y=x y^{2}$, then for $v=y^{-1}$ we have

$$
v^{\prime}-v=-x
$$

Thus,

$$
v=-e^{t} \int x e^{-t} d t=x+1+C e^{t}
$$

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

