Math 285 Lecture Note: Week 16

Daesung Kim

Lecture 36. Sturm–Liouville Boundary Value Problems (Sec 11.2)

We recall the definition of eigenvalues and eigenfunctions for a general differential operator.

Definition 1. Let L[y] be a differential operator. We say that λ is a real (or complex) eigenvalue of L with a homogeneous boundary conditions if $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$) and the differential equation $L[y] = \lambda y$ with the given homogeneous boundary conditions has nontrivial solutions. The nontrivial solutions are called eigenfunctions.

In this section, we study the Sturm–Liouville boundary problem, which consists of a differential equation of the form

$$(p(x)y')' - q(x)y + \lambda r(x)y = 0$$

on [0, 1] with boundary conditions

$$\alpha_1 y(0) + \alpha_2 y'(0) = 0,$$

 $\beta_1 y(1) + \beta_2 y'(1) = 0$

with $\alpha_1^2 + \alpha_2^2 > 0$ and $\beta_1^2 + \beta_2^2 > 0$. We further assume that p, p', q, r are continuous on [0, 1] and p(x), r(x) > 0 for all $x \in [0, 1]$. In this case, the problem is called *regular*.

Example 2. If p(x) = r(x) = 1 and q(x) = 0, then the problem is $y'' + \lambda y = 0$ with

$$\alpha_1 y(0) + \alpha_2 y'(0) = 0$$

$$\beta_1 y(1) + \beta_2 y'(1) = 0$$

Example 3. If $p(x) = x^k$, q(x) = 0, and $r(x) = x^{k-2}$, then

$$(p(x)y')' - q(x)y + \lambda r(x)y = x^{k}y'' + kx^{k-1}y' + \lambda x^{k-2}y = x^{k-2}(x^{2}y'' + kxy' + \lambda y) = 0.$$

Thus, the problem $x^2y'' + kxy' + \lambda y = 0$ with

$$\alpha_1 y(1) + \alpha_2 y'(1) = 0$$

$$\beta_1 y(2) + \beta_2 y'(2) = 0.$$

also belongs to the class.

Proposition 4 (Lagrange's identity). Let u and v be functions on [0,1] with continuous second derivatives and L a differential operator defined by L[y] = -(p(x)y')' + q(x)y. Then,

$$\int_0^1 (L[u]v - uL[v]) \, dx = -p(x) \left[u'(x)v(x) - u(x)v'(x) \right]_0^1$$

= $p(0) \left(u'(0)v(0) - u(0)v'(0) \right) - p(1) \left(u'(1)v(1) - u(1)v'(1) \right).$

Furthermore, if u and v satisfies the boundary condition

$$\alpha_1 y(0) + \alpha_2 y'(0) = 0,$$

 $\beta_1 y(1) + \beta_2 y'(1) = 0$

with $\alpha_1^2 + \alpha_2^2 > 0$ and $\beta_1^2 + \beta_2^2 > 0$, then

$$\int_{0}^{1} (L[u]v - uL[v]) \, dx = 0.$$

Remark 5. The Lagrange's identity with the boundary condition can be written as

$$(L[u], v) = (u, L[v])$$

where the inner product on [0, 1] is defined by

$$(f,g) = \int_0^1 f(x)g(x) \, dx.$$

The Lagrange's identity also holds for complex-valued functions u and v with the complex inner product

$$(f,g) = \int_0^1 f(x)\overline{g(x)} \, dx.$$

Theorem 6. Every eigenvalue of the Sturm-Liouville problem is real.

Proof. Let λ be an eigenvalue and ϕ the corresponding eigenfunction. Since ϕ is a solution to the Sturm–Liouville problem , we have

$$\int_0^1 L[\phi]\overline{\phi}\,dx = \int_0^1 \phi \overline{L[\phi]}\,dx$$

and $L[\phi] = \lambda r(x)\phi$. Since r(x) > 0 and ϕ is nontrivial, we get

$$\int_0^1 L[\phi]\overline{\phi} \, dx = \lambda \int_0^1 r(x)\phi\overline{\phi} \, dx = \overline{\lambda} \int_0^1 r(x)\phi\overline{\phi} \, dx = \int_0^1 \phi \overline{L[\phi]} \, dx$$

and so $\lambda = \overline{\lambda}$.

Theorem 7. If ϕ_n and ϕ_m are two eigenfunctions of the Sturm-Liouville problem corresponding to distinct eigenvalues λ_n and λ_m , then

$$\int_0^1 \phi_n(x)\phi_m(x)\,r(x)dx = 0.$$

We call ϕ_n and ϕ_m are orthogonal on [0, 1] with the weight r(x).

Proof. We have $L[\phi_n] = \lambda_n r(x)\phi_n$ and $L[\phi_m] = \lambda_m r(x)\phi_m$. It follows from the Lagrange's identity that

$$\int_0^1 L[\phi_n]\phi_m \, dx - \int_0^1 \phi_n L[\phi_m] \, dx = \lambda_n \int_0^1 \phi_n(x)\phi_m(x) \, r(x)dx - \lambda_m \int_0^1 \phi_n(x)\phi_m(x) \, r(x)dx$$
$$= (\lambda_n - \lambda_m) \int_0^1 \phi_n(x)\phi_m(x) \, r(x)dx$$
$$= 0.$$

Since $\lambda_n - \lambda_m \neq 0$, we obtain the desired result.

Theorem 8. Every eigenvalue of the Sturm-Liouville problem is simple; that is, if ϕ_1 and ϕ_2 are the corresponding eigenfunctions of the same eigenvalue λ , then they are linearly dependent. Furthermore, the eigenvalues form an infinite sequence $\lambda_1 < \lambda_2 < \cdots$ and $\lim_{n \to \infty} \lambda_n = \infty$.

Definition 9. An eigenfunction ϕ is normalized with respect to the weight r if

$$\int_0^1 \phi^2 r(x) dx = 1$$

Remark 10. Let $\lambda_1 < \lambda_2 < \cdots$ be the eigenvalues and ϕ_n the corresponding normalized eigenfunctions. Then,

$$\int_0^1 \phi_n \phi_m r(x) dx = \begin{cases} 1, & m = n \\ 0 & m \neq n. \end{cases}$$

In this case, we call the set $\{\phi_n : n = 1, 2, \dots\}$ is orthonormal.

Suppose that we are given a function f(x) and want to represent it in terms of the normalized eigenfunctions ϕ_n as we did in the heat conduction equation. To be specific, the question is to find C_n such that

$$f(x) = \sum_{n=1}^{\infty} C_n \phi_n(x).$$

Using the orthogonality and the normalization, it is obvious to guess that

$$C_n = \int_0^1 f(x)\phi_n(x) r(x)dx.$$

Theorem 11. Let ϕ_1, ϕ_2, \cdots be the normalized eigenfunctions of the Sturm-Liouville problem. If f(x) and f'(x) are piecewise continuous on [0, 1], then

$$\sum_{n=1}^{\infty} C_n \phi_n(x) = \frac{1}{2} (f(x+) + f(x-))$$

with

$$C_n = \int_0^1 f(x)\phi_n(x) r(x)dx.$$

References

[BD] Boyce and DiPrima, *Elementary Differential Equations and Boundary Value Problems*, 10th Edition, Wiley

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN $E\text{-}mail\ address: \texttt{daesungk@illinois.edu}$