
Math 285 Lecture Note: Week 15

Daesung Kim

Lecture 33. Laplace’s Equation: Dirichlet problem for a rectangle
(Sec 10.8)

Consider a 2-dimensional heat equation α2(uxx+uyy) = ut. If a steady state temperature distribution exists,
u is a function of x and y and satisfies

uxx + uyy = 0.

This is called Laplace’s equation. Since there is no time dependence, we do not have initial condition.
In 1-dimension, boundary conditions refer prescribed function values or derivatives at the ends of a given

interval. In higher dimension, information at two points is not sufficient. In general, boundary conditions
are conditions at all points of the boundary.

The problem of finding a solution of Laplace’s equation with prescribed function values on the boundary
is called a Dirichlet problem. The problem of finding a solution of Laplace’s equation with prescribed normal
derivatives on the boundary is called a Neumann problem.

In this section, we focus on 2-dimensional Dirichlet problems for a rectangle and a disk.
Consider

uxx + uyy = 0 (1)

in the rectangle R = {(x, y) ∈ R2 : 0 < x < a, 0 < y < b} with

u(x, 0) = 0, u(x, b) = 0 for 0 < x < a, (2)

u(0, y) = 0, u(a, y) = f(y) for 0 ≤ y ≤ b,

where f is a function on 0 ≤ y ≤ b. By the method of separation, we let u(x, y) = X(x)Y (y) and have

X ′′

X
= −Y

′′

Y
= λ.

The boundary conditions (3) read

Y (0) = Y (b) = 0, X(0) = 0

Solving Y ′′ + λY = 0 with Y (0) = Y (b) = 0, we get

λn =
n2π2

b2

Yn(y) = sin
(nπ
b
y
)
.

For each λn, we solve X ′′ − λnX = 0 with X(0) = 0 to obtain

Xn(x) = sinh
(nπ
b
x
)
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and so

u(x, y) =

∞∑
n=1

Cnun(x, y) =

∞∑
n=1

Cn sinh
(nπ
b
x
)

sin
(nπ
b
y
)
.

Now, the condition u(a, y) = f(y) implies

u(a, y) =

∞∑
n=1

Cn sinh
(nπa

b

)
sin
(nπ
b
y
)

= f(y).

Using the Fourier sine series of f , the constants Cn are determined by

Cn =
2

b sinh
(
nπa
b

) ∫ b

0

f(y) sin
(nπ
b
y
)
dy.

Example 1. Consider uxx + uyy = 0 in the rectangle R = {(x, y) ∈ R2 : 0 < x < 2, 0 < y < 2} with

u(x, 0) = 0, u(x, 2) = 0 for 0 < x < 2, (3)

u(0, y) = 0, u(2, y) = f(y) for 0 ≤ y ≤ 2,

where f(y) = 2y − y2. Then, the solution is

u(x, y) =

∞∑
n=1

Cn sinh
(nπ

2
x
)

sin
(nπ

2
y
)

where

Cn =
1

sinh (nπ)

∫ 2

0

(2y − y2) sin
(nπ

2
y
)
dy =

16(1− (−1)n)

π3n3 sinh (nπ)
.

Lecture 34. Laplace’s Equation: Dirichlet problem for a disk (Sec
10.8)

Consider the 2-dimensional Laplace’s equation in the disk

D = {(x, y) ∈ R2 : x2 + y2 < a2}.

with the boundary condition u(a cos θ, a sin θ) = f(θ) for 0 ≤ θ < 2π. For a disk, it is convenient to use
polar coordinates. Recall that polar coordinates are given by

x = r cos θ, y = r sin θ

for r > 0 and 0 ≤ θ < 2π. Using this, the disk can be written as D = {(r, θ) : 0 ≤ r < a, 0 ≤ θ < 2π}.
We abuse the notation u(x, y) = u(r, θ), then the boundary condition can be written as u(a, θ) = f(θ). We
translate the Laplace’s equation in terms of polar coordinates. By chain rule, we have

ur =
∂x

∂r
ux +

∂y

∂r
uy = (cos θ)ux + (sin θ)uy,

uθ =
∂x

∂θ
ux +

∂y

∂θ
uy = (−r sin θ)ux + (r cos θ)uy,

urr =
∂x

∂r
(ur)x +

∂y

∂r
(ur)y = (cos2 θ)uxx + (2 cos θ sin θ)uxy + (sin2 θ)uyy,

uθθ =
∂x

∂θ
(uθ)x +

∂y

∂θ
(uθ)y

= (r2 sin2 θ)uxx + (−2r2 sin θ cos θ)uxy + (r2 cos2 θ)uyy + (−r cos θ)ux + (−r sin θ)uy

= r2(uxx + uyy)− r2urr − rur.
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So, if uxx + uyy = 0, then

r2urr + rur + uθθ = 0.

Let u(r, θ) = R(r)Θ(θ), then

r2R′′(r)Θ(θ) + rR′(r)Θ(θ) +R(r)Θ′′(θ) = 0

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
= λ.

Thus, we get

r2R′′ + rR′ − λR = 0, Θ′′ + λΘ = 0.

We first solve the equation for Θ. Note that we do not have any boundary conditions for Θ. Instead, Θ is
periodic with period 2π.

Suppose λ = −µ2 < 0, then

Θ(θ) = c1e
µθ + c2e

−µθ.

Since Θ is periodic, c1 and c2 should be zero. That is, Θ = 0.
Suppose λ = 0, then Θ(θ) = c1 + c2θ. Due to the periodicity, c2 = 0, that is, Θ is a constant. In this

case, we have rR′′ +R′ = 0 and so the general solution is

R(r) = c1 + c2 ln r.

If r tends to 0, ln r diverges. Since we are interested in the case where u is bounded in the disk D, c2 should
be 0 and R is also a constant. Thus, the fundamental solution corresponding to λ = 0 is u0(r, θ) = 1.

Suppose λ = µ2 > 0, then

Θ(θ) = c1 cos(µθ) + c2 sin(µθ).

Since Θ is periodic with period 2π, µ should be a positive integer. For each n ∈ N, we want to solve
r2R′′ + rR′ − n2R = 0. Let R(r) = rk, then

r2R′′ + rR′ − n2R = (k(k − 1) + k − n2)rk = 0,

which means k = n,−n. Thus, the general solution is

R(r) = c1r
n + c2r

−n.

As r → 0, r−n does not converge. So, c2 = 0 and the fundament solution corresponding to λ = n2 is

un(r, θ) = rn(c1 cos(nθ) + c2 sin(nθ)).

Therefore, a solution to r2urr + rur + uθθ = 0 is

u(r, θ) =
c0
2

+

∞∑
n=1

rn(cn cosnθ + dn sinnθ).

Finally, the boundary condition u(a, θ) = f(θ) yields

u(a, θ) =
c0
2

+

∞∑
n=1

an(cn cosnθ + dn sinnθ) = f(θ).

Using the Fourier sine series of f , the coefficients cn and dn are determined by

cn =
1

anπ

∫ 2π

0

f(θ) cosnθ dθ,

dn =
1

anπ

∫ 2π

0

f(θ) sinnθ dθ.
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Lecture 35. The Occurrence of Two-Point Boundary Value Prob-
lems (Sec 11.1)

Previously, we have seen the heat conduction equation α2uxx = ut with boundary conditions u(0, t) = 0 (or
ux(0, t) = 0) and u(L, t) = 0 (or ux(L, t) = 0) and initial condition u(x, 0) = f(x). We used the method of
separation of variables to deduce two ODEs

X ′′ + λX = 0, X(0) = X(L) = 0,

T ′ + α2λT = 0.

It turned out that the ODE for X with the boundary conditions leads to eigenvalue problems. We have
shown that for some λn, there exists nontrivial solutions for the boundary problem. Then, we solved the
ODE for T and used the superposition property to get the solution.

Our goal of this and the next lecture is to generalize the heat conduction problem. We consider the
partial differential equations of the form

r(x)ut = (p(x)ux)x − q(x)u

with boundary conditions

α1u(0, t) + α2ux(0, t) = 0, β1u(L, t) + β2ux(L, t) = 0

for some α1, α2, β1, β2 with α2
1 + α2

2 > 0 and β2
1 + β2

2 > 0. For example, the heat conduction problem is the
case where p(x) = 1 = r(x) and q(x) = 0.

Let u(x, t) = X(x)T (t), then

r(x)X(x)T ′(t) = (p(x)X ′(x))′T (t)− q(x)X(x)T (t)

T ′(t)

T (t)
=

(p(x)X ′(x))′

r(x)X(x)
− q(x)

r(x)
= −λ.

Thus, we have T ′ + λT = 0

(p(x)X ′)′ − q(x)X + λr(x)X = 0.

The boundary conditions read

α1X(0) + α2X
′(0) = 0, β1X(L) + β2X

′(L) = 0

To solve the PDE r(x)ut = (p(x)ux)x−q(x)u, it suffices to understand the eigenvalue problem (p(x)X ′)′−
q(x)X + λr(x)X = 0 with the boundary conditions. This is called Sturm–Liouville theory.

Example 2. Consider the case where p(x) = r(x) = 1, q(x) = 0, α2 = 0, α1 = β1 = β2 = 1, and L = π.
That is, X ′′ + λX = 0 with X(0) = 0 and X(π) +X ′(π) = 0.

Suppose λ = −µ2 < 0, then

X(x) = c1 coshµx+ c2 sinhµx.

Note that X(0) = c1 = 0 and

X(π) +X ′(π) = c2(sinhµπ + µ coshµπ) = 0.

If c2 6= 0, then µ satisfies sinhµπ + µ coshµπ = 0 and so

µ = − tanhµπ.

Since − tanhµπ < 0 for µ > 0, there is no such µ. That is, there is no negative eigenvalue.
Suppose λ = 0, then X(x) = c1 + c2x. By the boundary conditions, c1 = 0 and X(π) + X ′(π) =

c2(π + 1) = 0. Thus, X(x) = 0, which means that 0 is not an eigenvalue.
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Suppose λ = µ2 > 0, then

X(x) = c1 cosµx+ c2 sinµx.

Note that X(0) = c1 = 0 and

X(π) +X ′(π) = c2(sinµπ + µ cosµπ) = 0.

If c2 6= 0, then µ satisfies sinµπ + µ cosµπ = 0 and so

µ = − tanµπ.

For each n ∈ N, there exists µn ∈ (n − 1
2 , n + 1

2 ) such that µn = − tanµnπ. For each eigenvalue λn = µ2
n,

the corresponding eigenfunction is

φn(x) = kn sin
√
λnx

for arbitrary constant kn. Note that as n→∞ λn = µ2
n ≈ (n− 1

2 )2.
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