Math 285 Lecture Note: Week 15

Daesung Kim

Lecture 33. Laplace’s Equation: Dirichlet problem for a rectangle
(Sec 10.8)

Consider a 2-dimensional heat equation o (uz, +uy,) = us. If a steady state temperature distribution exists,
u is a function of z and y and satisfies

Ugy + Uyy = 0.

This is called Laplace’s equation. Since there is no time dependence, we do not have initial condition.

In 1-dimension, boundary conditions refer prescribed function values or derivatives at the ends of a given
interval. In higher dimension, information at two points is not sufficient. In general, boundary conditions
are conditions at all points of the boundary.

The problem of finding a solution of Laplace’s equation with prescribed function values on the boundary
is called a Dirichlet problem. The problem of finding a solution of Laplace’s equation with prescribed normal
derivatives on the boundary is called a Neumann problem.

In this section, we focus on 2-dimensional Dirichlet problems for a rectangle and a disk.

Consider

Ugg + Uyy = 0 (1)
in the rectangle R = {(z,y) € R? : 0 <z < a,0 < y < b} with

u(z,0) =0, u(z,b) =0 for0<z < a, (2)
w®0,9) =0,  u(a,y)=fly) for0<y<b,

where f is a function on 0 < y < b. By the method of separation, we let u(z,y) = X(2)Y (y) and have

X// Y//

A
X Y

The boundary conditions (3) read

Solving Y + AY = 0 with Y(0) = Y'(b) = 0, we get

n?m?

b2
Y, (y) = sin (%y) .

For each A, we solve X" — A\, X = 0 with X(0) = 0 to obtain

An =

X (x) = sinh (n%x)



and so
u(x,y) = ; Crn(z,y) = ;Cn sinh (%x) sin (n%y) .

Now, the condition u(a,y) = f(y) implies
= . nwa\ . (Nw
u(a,y) = Z C,, sinh (T) sin (Ty> = f(y).
n=1

Using the Fourier sine series of f, the constants C,, are determined by

2 b .o/nT
On = oinh (222) /0 fwsin () dy.

Example 1. Consider ug; + uy, = 0 in the rectangle R = {(z,y) € R?: 0 < z < 2,0 < y < 2} with
u(z,0) =0, u(z,2) =0 for0<z<2, (3)
w(0,9) =0,  w(2y)=fly) for0<y<2,
where f(y) = 2y — y?. Then, the solution is
u(z,y) = T; C,, sinh (%Tx) sin (%y)

where

C, = %ﬂ_) /02(2y —9?)sin (ngy) dy = 16(1 - (=1)")

sinh ( ~ mnp3sinh (n7)’

Lecture 34. Laplace’s Equation: Dirichlet problem for a disk (Sec
10.8)

Consider the 2-dimensional Laplace’s equation in the disk
D= {(z,y) € R? : 2* +y* < a*}.

with the boundary condition u(acosf,asinf) = f(0) for 0 < § < 27. For a disk, it is convenient to use
polar coordinates. Recall that polar coordinates are given by

x =rcosf, y=rsinf

for r > 0 and 0 < 6 < 27. Using this, the disk can be written as D = {(r,0) : 0 < r < a,0 < 0 < 27}.
We abuse the notation u(x,y) = u(r, 6), then the boundary condition can be written as u(a,8) = f(6). We
translate the Laplace’s equation in terms of polar coordinates. By chain rule, we have

ox Y .

Ur = 5l + a = (cos O)uy + (sin 0)uy,
ox oy .

Uup = gl + 0% = (—rsinf)ug + (rcosf)uy,

Uy = %(ur)m + %(ur)y = (cos? 0)ug, + (2 cos fsin 0)uzy + (sin? 0)uyy,

r

or y

ugy = %(UQ)w + %(Ué)y

= (r?sin”® O)ug, + (—2r7 sin 6 cos O)ug,, + (12 cos? O)uy, + (=1 cos O)u, + (—rsin)u,

=12 (Ugg + Uyy) — T2 Uy — T



So, if Uugg + uyy = 0, then
Uy 4 TUy + ugg = 0.
Let u(r,0) = R(r)©(0), then
2R’ (r)0(0) + rR' (r)0(0) + R(r)0"(6) =0
2Br) ') ©"(0)

R R 60

Thus, we get
r?R"+rR — AR =0, 0" + X6 =0.

We first solve the equation for ©. Note that we do not have any boundary conditions for ©. Instead, © is
periodic with period 27.
Suppose A = —pu? < 0, then

0(0) = c1e? + coe™ M.

Since © is periodic, ¢; and ¢y should be zero. That is, © = 0.
Suppose A = 0, then ©(0) = ¢; + c20. Due to the periodicity, co = 0, that is, © is a constant. In this
case, we have rR” + R’ = 0 and so the general solution is

R(r)=c1+calnr.

If r tends to 0, Inr diverges. Since we are interested in the case where u is bounded in the disk D, ¢, should
be 0 and R is also a constant. Thus, the fundamental solution corresponding to A = 0 is ug(r,0) = 1.
Suppose A = p? > 0, then

O(0) = c1 cos(uld) + cosin(ub).

Since O is periodic with period 27, p should be a positive integer. For each n € N, we want to solve
R’ +rR —n?R=0. Let R(r) = r*, then

PR’ +rR —n?R = (k(k—1)+k —n?)rkF =0,
which means k£ = n, —n. Thus, the general solution is
R(r)=cir™ + cor™".
As r — 0, r~™ does not converge. So, co = 0 and the fundament solution corresponding to A = n? is
up(r,0) = r"(c1 cos(nh) + co sin(nh)).

Therefore, a solution to 72wy, + ru, + uge = 0 is

u(r,0) = %0 + Z r"(cy cosnf + d,, sinnf).

n=1
Finally, the boundary condition u(a,8) = f(0) yields

u(a, ) = %O + Z a™(ep, cosnb + d, sinnf) = f(0).
n=1

Using the Fourier sine series of f, the coefficients ¢,, and d,, are determined by

1 2m
Chp = —— £(6) cosnb db,
am Jq
1 27
dp = — £(0)sinnd db.
a"m Jo



Lecture 35. The Occurrence of Two-Point Boundary Value Prob-
lems (Sec 11.1)

Previously, we have seen the heat conduction equation a?u,, = u; with boundary conditions u(0,t) = 0 (or
uz(0,t) = 0) and u(L,t) = 0 (or u,(L,t) = 0) and initial condition u(z,0) = f(z). We used the method of
separation of variables to deduce two ODEs

X"+ XX =0, X(0)=X(L)=0,
T 4+ a*\T = 0.
It turned out that the ODE for X with the boundary conditions leads to eigenvalue problems. We have
shown that for some A\, there exists nontrivial solutions for the boundary problem. Then, we solved the
ODE for T and used the superposition property to get the solution.
Our goal of this and the next lecture is to generalize the heat conduction problem. We consider the
partial differential equations of the form
r(a:)ut = (p(x)uz)z - Q(x)u
with boundary conditions

alu(ov t) + Q2Uyg (07 t) = Oa 61U(L7 t) + BQUJ&C (La t) =0

for some a1, ao, B1, B2 with a? + a2 > 0 and 87 + 57 > 0. For example, the heat conduction problem is the
case where p(z) =1 =r(z) and ¢g(z) = 0.
Let u(z,t) = X(x)T(t), then

Thus, we have 7" + XT' =0

The boundary conditions read

a1 X(0) +axX'(0)=0, B X(L)+BX'(L) =0

!

To solve the PDE r(x)u; = (p(z)uy). —q(2)u, it suffices to understand the eigenvalue problem (p(z)X’)"—
q(z)X + Mr(x)X = 0 with the boundary conditions. This is called Sturm-Liouville theory.

Example 2. Consider the case where p(z) = r(z) =1, ¢(x) =0, s =0, 01 = 1 = 2 =1, and L = 7.
That is, X" + AX = 0 with X(0) =0 and X (7) + X'(7w) = 0.
Suppose A = —u? < 0, then
X (x) = ¢1 cosh px + ¢o sinh pz.
Note that X (0) = ¢; = 0 and
X(m) + X'(7) = ca(sinh um + pcosh pm) = 0.

If c3 # 0, then p satisfies sinh pm + p cosh ym = 0 and so

w = —tanh pm.

Since — tanh pum < 0 for u > 0, there is no such . That is, there is no negative eigenvalue.
Suppose A = 0, then X(x) = ¢; + cox. By the boundary conditions, ¢; = 0 and X(7) + X'(7r) =
ca(m+ 1) = 0. Thus, X(x) = 0, which means that 0 is not an eigenvalue.



Suppose A = p? > 0, then
X(x) = ¢1 cos px + co sin px.
Note that X(0) = ¢; =0 and
X(7) + X'(7) = co(sin pum + pcos ur) = 0.
If c3 # 0, then p satisfies sin pum + pcos um = 0 and so
pu = —tan um.

For each n € N, there exists u, € (n — %, n+ %) such that y, = —tan u,n. For each eigenvalue )\, = u2,

the corresponding eigenfunction is

On(2) = ky sin\/Anz

for arbitrary constant k,. Note that as n — oo A\, = p2 ~ (n — %)2
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