Math 285 Lecture Note: Week 13

Daesung Kim

Lecture 32. The Wave Equation: Vibrations of an Elastic String (Sec 10.7)

1 Nonzero initial velocity

We consider the wave equation

$$
\begin{equation*}
a^{2} u_{x x}=u_{t t} \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
u(0, t)=0, \quad u(L, t)=0 \tag{2}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
u(x, 0)=0, \quad u_{t}(x, 0)=g(x) \tag{3}
\end{equation*}
$$

Using the same argument, we get

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, \quad X_{n}(x)=\sin \left(\frac{n \pi}{L} x\right)
$$

and $T^{\prime \prime}+a^{2} \lambda T=0$ with $T(0)=0$. Since the general solution for T is

$$
T_{n}(t)=k_{1} \cos \left(\frac{n \pi a}{L} t\right)+k_{2} \sin \left(\frac{n \pi a}{L} t\right),
$$

the initial condition $T(0)=0$ implies $k_{1}=0$. Thus,

$$
u_{n}(x, t)=\sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{n \pi a}{L} t\right)
$$

is a solution to (1) with (2) and $u(x, 0)=0$. Since this boundary problem is homogeneous, the superposition property yields that

$$
u(x, t)=\sum_{n=1}^{\infty} D_{n} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{n \pi a}{L} t\right)
$$

is also a solution. Finally, the initial condition $u_{t}(x, 0)=g(x)$ yields

$$
u_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} D_{n} \frac{n \pi a}{L} \sin \left(\frac{n \pi}{L} x\right)
$$

We use the Fourier sine series of g to determine C_{n}

$$
D_{n}=\frac{2}{n \pi a} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

2 General case

We are ready to find a solution $u(x, t)$ to (1) with boundary conditions (2) and initial conditions

$$
\begin{equation*}
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \tag{4}
\end{equation*}
$$

To this end, we find two solutions $v(x, t)$ and $w(x, t)$ such that $v(x, t)$ is a solution with initial condition

$$
\begin{equation*}
u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \tag{5}
\end{equation*}
$$

and $w(x, t)$ with (3). That is,

$$
\begin{array}{lcc}
a^{2} v_{x x}=v_{t t}, & v(0, t)=v(L, t)=0, & v(x, 0)=f(x), \\
a^{2} w_{x x}=w_{t t}, & w(0, t)=w(L, t)=0, & w(x, 0)=0,
\end{array} v_{t}(x, 0)=0, ~ w_{t}(x, 0)=g(x), ~ l
$$

Define $u(x, t)=v(x, t)+w(x, t)$, then

$$
\begin{aligned}
a^{2} u_{x x} & =a^{2}\left(v_{x x}+w_{x x}\right)=a^{2} v_{x x}+a^{2} w_{x x}=v_{t t}+w_{t t}=u_{t t}, \\
u(0, t) & =v(0, t)+w(0, t)=0, \\
u(L, t) & =v(L, t)+w(L, t)=0, \\
u(x, 0) & =v(x, 0)+w(x, 0)=f(x)+0=f(x), \\
u_{t}(x, 0) & =v_{t}(x, 0)+w_{t}(x, 0)=0+g(x)=g(x) .
\end{aligned}
$$

Thus,

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi}{L} x\right) \cos \left(\frac{n \pi a}{L} t\right)+\sum_{n=1}^{\infty} D_{n} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{n \pi a}{L} t\right)
$$

with

$$
\begin{aligned}
C_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x \\
D_{n} & =\frac{2}{n \pi a} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{aligned}
$$

References

[BD]
Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

