
Math 285 Lecture Note: Week 12

Daesung Kim

Lecture 29. Separation of Variables; Heat Conduction in a Rod
(Sec 10.5)

Consider a heat conduction problem for a straight bar of length L > 0. Suppose it has uniform cross section
and homogeneous material. Let the x-axis lie along the axis of the bar. Assume that the sides of the bar
are perfectly insulated and each cross section has uniform temperature. Let u(x, t) be the temperature of a
cross section at x and time t. Then, u is governed by the heat conduction equation

α2uxx = ut, 0 < x < L, t > 0.

The constant α2 is called the thermal diffusivity.
We further assume that the initial temperature of the bar is given by u(x, 0) = f(x) for 0 ≤ x ≤ L and

the ends of the bar are held at fixed temperatures u(0, t) = T1 and u(L, t) = T2 for all t > 0. In this section,
we focus on the case T1 = T2 = 0 find solutions to

α2uxx = ut, u(0, t) = u(L, t) = 0, u(x, 0) = f(x). (1)

First, we consider the boundary problem

α2uxx = ut, u(0, t) = u(L, t) = 0. (2)

for 0 < x < L and t > 0. (In other words, we drop the initial temperature distribution for a moment.) Note
that this boundary problem has a trivial solution u(x, t) = 0 for all x and t. However, this may not satisfy
u(x, 0) = f(x) except when f = 0. Thus, we want to find nontrivial solutions to (2).

The idea is to consider the case where u(x, t) is a product of two functions X(x) and T (t). Let u(x, t) =
X(x)T (t), then α2uxx = ut implies

α2X ′′(x)T (t) = X(x)T ′(t)

X ′′(x)

X(x)
=

1

α2

T ′(t)

T (t)

Note that the boundary conditions read X(0)T (t) = X(L)T (t) = 0 for all t > 0. If X(0) 6= 0 or X(L) 6= 0,
then T (t) = 0 for all t > 0. Since we are looking for nontrivial solutions, it is reasonable to assume that
X(0) = X(L) = 0.

Suppose X′′(x)
X(x) is a constant for all x and t, that is, X ′′(x) + λX(x) = 0. If u(x, t) = X(x)T (t) is

nontrivial, the constant λ should be an eigenvalue and X(x) is an eigenfunction. Thus, we get

λn =
n2π2

L2
, Xn(x) = C sin

(nπ
L
x
)
,

for all n ∈ N. Plugging this λ to the equation for T (t) and solving it, we have

T ′(t) = −n
2π2α2

L2
T (t),

Tn(t) = C exp

(
−n

2π2α2

L2
t

)
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for all n ∈ N. Thus,

un(x, t) = Cn exp

(
−n

2π2α2

L2
t

)
sin
(nπ
L
x
)

for all n ∈ N.
Since the boundary problem (2) is homogeneous, if u1 and u2 are solutions then so is a linear combination

c1u1 + c2u2. (This is called superposition.) So, we have

u(x, t) =

∞∑
n=1

Cn exp

(
−n

2π2α2

L2
t

)
sin
(nπ
L
x
)
.

The last step is to impose the initial temperature distribution u(x, 0) = f(x). From the above solution,
we have

u(x, 0) =

∞∑
n=1

Cn sin
(nπ
L
x
)

= f(x).

We now use a Fourier series representation for f to determine Cn for all n ∈ N. To this end, we extend f
to an odd function on [−L,L] (i.e. define f(x) for x ∈ [−L, 0) by −f(−x), and f(x+ 2L) = f(x) for all x)
and assume that the Fourier convergence theorem is applicable (i.e. f and f ′ are piecewise continuous). If
we choose

Cn =
1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx =

2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx,

then

u(x, t) =

∞∑
n=1

Cn exp

(
−n

2π2α2

L2
t

)
sin
(nπ
L
x
)
.

is a solution to the boundary problem (1).

Lecture 30. Other Heat Conduction Problems (Sec 10.6)

Nonhomogeneous boundary conditions

Consider a heat conduction problem for a straight bar of length L > 0. Suppose the ends of the bar are
held at constant temperatures T1 and T2. Then, the corresponding heat conduction equation with boundary
conditions is α2uxx = ut with

u(0, t) = T1, u(L, t) = T2, u(x, 0) = f(x). (3)

Let v(x) = limt→∞ u(x, t) be the steady state temperature distribution, then it will satisfy v′′ = 0 with
v(0) = T1 and v(L) = T2. Solving the boundary problem, we get

v(x) = T1(1− x

L
) + T2

x

L
= T1 +

(
T2 − T1

L

)
x.

Let w(x, t) = u(x, t)− v(x), then we have α2wxx = wt with

w(0, t) = w(L, t) = 0, w(x, 0) = f(x)− v(x) = f(x)− T1 −
(
T2 − T1

L

)
x.

We have seen in the previous section that

w(x, t) =

∞∑
n=1

Cn exp

(
−n

2π2α2

L
t

)
sin
(nπ
L
x
)
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where

Cn =
2

L

∫ L

0

(f(x)− v(x)) sin
(nπ
L
x
)
dx,

Therefore, the solution is

u(x, t) = v(x) + w(x, t) = T1 +

(
T2 − T1

L

)
x+

∞∑
n=1

Cn exp

(
−n

2π2α2

L
t

)
sin
(nπ
L
x
)
.

Bar with insulated ends

Suppose that the ends of the bar are perfectly insulated so that there is no passage of heat through them.
This model is governed by α2uxx = ut with

ux(0, t) = ux(L, t) = 0, u(x, 0) = f(x). (4)

We use the method of separation of variables. Let u(x, t) = X(x)T (t), then

X ′′

X
=

1

α2

T ′

T
= −λ

as before. For X(x), we have X ′′ + λX = 0 with X ′(0) = X ′(L) = 0. By considering Z(x) := X ′(x), we get

λn =
n2π2

L
,

Xn(x) = cos
(nπ
L
x
)

for all n = 0, 1, 2, · · · . For each λn, a solution to T ′ = −λnα2T is

Tn(t) = exp

(
−n

2π2α2

L
t

)
.

Thus, we have

u(x, t) =
C0

2
+

∞∑
m=1

Cn exp

(
−n

2π2α2

L
t

)
cos
(nπ
L
x
)
.

Since the initial temperature distribution is

u(x, 0) =
C0

2
+

∞∑
m=1

Cn cos
(nπ
L
x
)

= f(x),

we use the Fourier cosine series for f to determine Cn. That is,

Cn =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx

for all n = 0, 1, 2, · · · .

Lecture 31. The Wave Equation: Vibrations of an Elastic String
(Sec 10.7)

1 Model

Suppose that an elastic string of length L is tightly stretched between two supports at the same horizontal
level. Let the x-axis lie along the string. Let u(x, t) be the vertical displacement by the string at the point
x at time t. Then, u(x, t) satisfies the PDE

a2uxx = utt (5)
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for 0 < x < L and t > 0. The equation is called the 1-dimensional wave equation. Since the ends are fixed,
we have the boundary conditions

u(0, t) = 0, u(L, t) = 0 (6)

for all t ≥ 0. We prescribe two initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x) (7)

for all 0 ≤ x ≤ L. We note that the wave equation (5) can be generalized to higher dimensions:

a2(uxx + uyy) = utt, a2(uxx + uyy + uzz) = utt, · · · .

2 Nonzero initial displacement

We consider the wave equation (5) with boundary condition (6) and initial conditions

u(x, 0) = f(x), ut(x, 0) = 0. (8)

As we did for the heat equation, we use the method of separation of variables. Let u(x, t) = X(x)T (t), then

X ′′

X
=

1

a2
T ′′

T
= −λ

so that

X ′′ + λX = 0, T ′′ + a2λT = 0.

The boundary conditions (6) read

X(0) = X(L) = 0.

Therefore, for each n ∈ N, we have

λn =
n2π2

L2
, Xn(x) = sin

(nπ
L
x
)
.

For these λn, the general solution to T ′′ + a2λT = 0 is

Tn(t) = k1 cos
(nπa
L

t
)

+ k2 sin
(nπa
L

t
)
.

Using the initial condition ut(x, 0) = 0, we have T ′(0) = 0 so that k2 = 0. Thus,

un(x, t) = sin
(nπ
L
x
)

cos
(nπa
L

t
)

is a solution to (5) with (6) and ut(x, 0) = 0. Since this boundary problem is homogeneous, the superposition
property yields that

u(x, t) =

∞∑
n=1

Cn sin
(nπ
L
x
)

cos
(nπa
L

t
)

is also a solution. Finally, we consider the initial condition u(x, 0) = f(x). Since

u(x, 0) = f(x) =

∞∑
n=1

Cn sin
(nπ
L
x
)
,

we use the Fourier sine series of f to determine Cn

Cn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx.
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Remark 1. Note that for each n ∈ N, un(x, t) is periodic in time t and position x. The quantity nπa/L for
n ∈ N are called the natural frequencies of the string. The factor sin(nπx/L) represents the displacement
pattern, which is called a natural mode of vibration. The period of position 2L/n is called the wavelength
of the mode.

Example 2. We consider 4uxx = utt with u(0, t) = u(2, t) = 0, u(x, 0) = f(x), and ut(x, 0) = 0 where

f(x) =


x, 0 ≤ x ≤ 1,

2− x, 1 ≤ x ≤ 2,

0, otherwise.

Then, the solution is

u(x, t) =

∞∑
n=1

Cn sin
(nπ

2
x
)

cos (nπt)

with

Cn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx

=

∫ 1

0

x sin
(nπ

2
x
)
dx+

∫ 2

1

(2− x) sin
(nπ

2
x
)
dx

=
8

π2n2
sin
(nπ

2

)
.
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