
Math 285 Lecture Note: Week 11

Daesung Kim

Lecture 26. Fourier Series, part 2 (Sec 10.2)

Recall that if a function f can be written as

f(x) =
a0
2

+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
,

then

an =
1

L
(f, cos

nπx

L
) =

1

L

∫ L

−L
f(x) cos

nπx

L
dx,

bn =
1

L
(f, sin

nπx

L
) =

1

L

∫ L

−L
f(x) sin

nπx

L
dx.

Example 1. Consider a periodic function f defined by

f(x) =

{
x, 0 ≤ x < 1,

−x, −1 ≤ x < 0,

and f(x + 2) = f(x) for all x ∈ R. In this case L = 1. Suppose f can be written as a Fourier series. Let’s
find am and bm. First,

a0 = (f, 1) =
1

L

∫ 1

−1
f(x) dx = 1.

For n = 1, 2, · · · , we have

an =
1

L
(f, cos(nπx)) =

∫ 1

−1
f(x) cos(nπx) dx

= 2

∫ 1

0

x cos(nπx) dx

= 2

([
x sin(nπx)

nπ

]1
0

− 1

nπ

∫ 1

0

sin(nπx) dx

)

=
2

n2π2
(cos(nπ)− 1)

=

{
− 4
n2π2 , m is odd,

0, m is even,
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and

bn =
1

L
(f, sin(nπx)) =

∫ 1

−1
f(x) sin(nπx) dx

=

∫ 1

0

x sin(nπx) dx−
∫ 0

−1
x sin(nπx) dx

=

∫ 1

0

x sin(nπx) dx−
∫ 1

0

x sin(nπx) dx

= 0.

Therefore,

f(x) =
1

2
−

∞∑
m=1,m is odd

4

m2π2
cos(mπx)

=
1

2
− 4

π2

∞∑
k=1

cos((2k − 1)πx)

(2k − 1)2
.

Example 2. Consider a periodic function f defined by

f(x) =

{
1, 0 ≤ x < 2,

−1, −2 ≤ x < 0,

and f(x + 4) = f(x) for all x ∈ R. In this case L = 2. Suppose f can be written as a Fourier series. Let’s
find am and bm. First,

a0 = (f, 1) =
1

L

∫ 2

−2
f(x) dx = 0.

For n = 1, 2, · · · , we have

an =
1

L
(f, cos

(nπx
2

)
)

=
1

2

∫ 2

−2
f(x) cos

(nπx
2

)
dx

=
1

2

∫ 2

0

cos
(nπx

2

)
dx− 1

2

∫ 0

−2
cos
(nπx

2

)
dx

= 0.

and

bn =
1

L
(f, sin

(nπx
2

)
)

=
1

2

∫ 2

−2
f(x) sin

(nπx
2

)
dx

=

∫ 2

0

sin
(nπx

2

)
dx

= − 2

nπ
[cos

(nπx
2

)
]20

=
2

nπ
(1− cos(nπ))

=

{
4
nπ , m is odd,

0, m is even.
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Therefore,

f(x) =

∞∑
m=1,m is odd

4

mπ
sin
(mπx

2

)
=

4

π

∞∑
k=1

1

(2k − 1)
sin

(
(2k − 1)πx

2

)
.

Lecture 27. The Fourier Convergence Theorem (Sec 10.3)

Suppose a function f is given. If f is periodic with period 2L > 0 and integrable on [−L,L], then we can
compute

an =
1

L
(f, cos

nπx

L
) =

1

L

∫ L

−L
f(x) cos

nπx

L
dx,

bn =
1

L
(f, sin

nπx

L
) =

1

L

∫ L

−L
f(x) sin

nπx

L
dx.

Define

SN (x) =
a0
2

+

N∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
for each N = 1, 2, · · · .

Question 3.

(i) Does SN (x) converge as N →∞ for each x?

(ii) Suppose SN (x) converges to a function, say S(x), as N → ∞ for each x. Is the limit S(x) equal to
f(x)?

Definition 4. A function f is called piecewise continuous on an interval [a, b] if there exists a partition of
[a, b], a = x0 < x1 < · · · < xn = b such that

(i) f is continuous on an open subinterval (xi−1, xi) for each i = 1, 2, · · · , n, and

(ii) the limits

lim
x→xi−1+

f(x), lim
x→xi−

f(x)

are finite for each i = 1, 2, · · · , n.

Example 5. Let f(x) be a periodic function with period 2 defined by f(x) = x on [−1, 1) and f(x+2) = f(x),
then it is piecewise continuous.

Example 6. Let f(x) = 1
x for x 6= 0, then it is not piecewise continuous.

Theorem 7. Suppose f and f ′ are piecewise continuous on [−L,L]. Assume that f is periodic with period
2L, that is, f(x+2L) = f(x). Then, SN (x) converges to a function S(x) as N →∞ for each x. Furthermore,
S(x) = f(x) if f is continuous at x and

S(x) =
1

2
(f(x+) + f(x−))

otherwise.
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Example 8. Consider a periodic function f with period 2 defined by f(x) = x on [−1, 1) and f(x+2) = f(x).
Note that f is discontinuous at x = 2k − 1, k ∈ Z. In this case L = 1. Let’s find am and bm. First,

a0 = (f, 1) =
1

L

∫ 1

−1
f(x) dx = 0.

For n = 1, 2, · · · , we have

an =
1

L
(f, cos(nπx)) =

∫ 1

−1
f(x) cos(nπx) dx

=

∫ 1

−1
x cos(nπx) dx

=

[
x sin(nπx)

nπ

]1
−1
− 1

nπ

∫ 1

−1
sin(nπx) dx

= 0

and

bn =
1

L
(f, sin(nπx)) =

∫ 1

−1
f(x) sin(nπx) dx

=

∫ 1

−1
x sin(nπx) dx

=

[
−x cos(nπx)

nπ

]1
−1

+
1

nπ

∫ 1

−1
cos(nπx) dx

= −2 cos(nπ)

nπ

= −2(−1)n

nπ

Therefore,

SN (x) = − 2

π

N∑
m=1

(−1)m

m
sin(mπx).

Since f satisfies the assumptions of the Fourier convergence theorem, we see that SN (x) converges to S(x)
as N →∞ for each x and

f(x) = − 2

π

∞∑
m=1

(−1)m

m
sin(mπx)

for x 6= 2k − 1, k ∈ Z. Note that S(2k − 1) = 0 and

1

2
(f((2k − 1)+) + f((2k − 1)−)) =

1

2
(−1 + 1) = 0

for all k ∈ Z.

Example 9. Consider a periodic function f defined by

f(x) =

{
x, 0 ≤ x < 1,

−x, −1 ≤ x < 0,

and f(x+ 2) = f(x) for all x ∈ R. We have seen that

SN (x) =
1

2
− 4

π2

N∑
k=1

cos((2k − 1)πx)

(2k − 1)2
.
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Since f satisfies the assumptions of the Fourier convergence theorem, we have

f(x) =
1

2
− 4

π2

∞∑
k=1

cos((2k − 1)πx)

(2k − 1)2
.

In particular, if x = 0, then

f(0) = 0 =
1

2
− 4

π2

∞∑
k=1

1

(2k − 1)2

and so

∞∑
k=1

1

(2k − 1)2
=
π2

8
.

Lecture 28. Even and Odd Functions (Sec 10.4)

Definition 10. A function f is called even if f(−x) = f(x) for all x in the domain. A function f is called
odd if f(−x) = −f(x) for all x in the domain.

Example 11 (Even functions).

(i) cos(mx) for any m.

(ii) xk for even integers k.

(iii) f(x) + f(−x) for any function f .

Example 12 (Odd functions).

(i) sin(mx) and tan(mx) for any m.

(ii) xk for odd integers k.

(iii) f(x)− f(−x) for any function f .

Proposition 13. Let f, f1, f2 be even and g, g1, g2 be odd.

(i) f1 ± f2, f1f2, g1g2, f1/f2, g1/g2 are even functions.

(ii) g1 ± g2, fg, and f/g are odd functions.

(iii) If f and g are differentiable, then f ′ is odd and g′ is even.

(iv)

∫ L

−L
f(x) dx = 2

∫ L

0

f(x) dx and

∫ L

−L
g(x) dx = 0.

1 Fourier cosine series

Suppose f and f ′ are piecewise continuous on [−L,L]. Assume that f is even and periodic with period 2L.
That is, f(x) = f(−x) and f(x+ 2L) = f(x) for all x. Since f(x) cos(mπx/L) is even and f(x) sin(mπx/L)
is odd, we have bm = 0 for all m = 1, 2, · · · . By the Fourier convergence theorem, we obtain

f(x) =
a0
2

+

∞∑
m=1

(
am cos

mπx

L

)
Such a series is called a Fourier cosine series.
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Example 14. Consider a periodic function f defined by

f(x) =

{
x, 0 ≤ x < 1,

−x, −1 ≤ x < 0,

and f(x+ 2) = f(x) for all x ∈ R. Since f is even, f has a Fourier cosine series. Indeed, we have seen that

f(x) =
1

2
− 4

π2

∞∑
k=1

cos((2k − 1)πx)

(2k − 1)2
.

2 Fourier sine series

Suppose f and f ′ are piecewise continuous on [−L,L]. Assume that f is odd and periodic with period 2L.
That is, f(x) = f(−x) and f(x+ 2L) = f(x) for all x. Since f(x) cos(mπx/L) is odd and f(x) sin(mπx/L)
is even, we have am = 0 for all m = 0, 1, 2, · · · . By the Fourier convergence theorem, we obtain

f(x) =

∞∑
m=1

(
bm sin

mπx

L

)
Such a series is called a Fourier sine series.

Example 15. Consider a periodic function f with period 2 defined by f(x) = x on [−1, 1) and f(x+ 2) =
f(x). Note that f is discontinuous at x = 2k− 1, k ∈ Z. Since f is odd, it has a Fourier sine series. Indeed,
we have seen that

f(x) = − 2

π

∞∑
m=1

(−1)m

m
sin(mπx)

for x 6= 2k − 1, k ∈ Z.

3 Even and odd periodic extension

Suppose we are given a function f on [0, L]. We want to represent it as a Fourier series on [0, L]. To do this,
we first extend f to be a periodic function. There are a lot of ways to do that. We assume that f is nice
enough that the Fourier convergence theorem is applicable.

3.1 Extension to Cosine series

Define g by

g(x) =

{
f(x), 0 ≤ x ≤ L,
f(−x), −L ≤ x < 0,

and g(x+ 2L) = g(x). Then, g(x) is an even periodic function with period 2L. Thus, it has a Fourier cosine
series

g(x) =
a0
2

+

∞∑
m=1

am cos
(mπx

L

)
where

am =
1

L

∫ L

−L
g(x) cos

(mπx
L

)
dx =

2

L

∫ L

0

f(x) cos
(mπx

L

)
dx.

In particular, if x ∈ [0, L] then g(x) = f(x) and so

f(x) =
a0
2

+

∞∑
m=1

am cos
(mπx

L

)
.

This is called a Fourier cosine series of f .
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3.2 Extension to Sine series

Define h by

h(x) =

{
f(x), 0 ≤ x ≤ L,
−f(−x), −L ≤ x < 0,

and h(x + 2L) = h(x). Then, h(x) is an odd periodic function with period 2L. Thus, it has a Fourier sine
series

h(x) =

∞∑
m=1

bm sin
(mπx

L

)
where

bm =
1

L

∫ L

−L
h(x) sin

(mπx
L

)
dx =

2

L

∫ L

0

f(x) sin
(mπx

L

)
dx.

In particular, if x ∈ [0, L] then h(x) = f(x) and so

f(x) =

∞∑
m=1

bm sin
(mπx

L

)
.

This is called a Fourier sine series of f .

Example 16. Suppose f(x) = x on [0, 1) and define g(x) by g(x+ 2) = g(x) and

g(x) =

{
x, 0 ≤ x < 1,

−x, −1 ≤ x < 0.

We have seen that

g(x) =
1

2
− 4

π2

∞∑
k=1

cos((2k − 1)πx)

(2k − 1)2
.

If we extend f to be an odd periodic function h with period 2 as above, then

h(x) = − 2

π

∞∑
m=1

(−1)m

m
sin(mπx)

for x 6= 2k − 1, k ∈ Z. In particular, we have

f(x) =
1

2
− 4

π2

∞∑
k=1

cos((2k − 1)πx)

(2k − 1)2
= − 2

π

∞∑
m=1

(−1)m

m
sin(mπx)

for x ∈ [0, 1).
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