Math 285 Lecture Note: Week 11

Daesung Kim

Lecture 26. Fourier Series, part 2 (Sec 10.2)

Recall that if a function f can be written as

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right)
$$

then

$$
\begin{aligned}
& a_{n}=\frac{1}{L}\left(f, \cos \frac{n \pi x}{L}\right)=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L}\left(f, \sin \frac{n \pi x}{L}\right)=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Example 1. Consider a periodic function f defined by

$$
f(x)= \begin{cases}x, & 0 \leq x<1 \\ -x, & -1 \leq x<0\end{cases}
$$

and $f(x+2)=f(x)$ for all $x \in \mathbb{R}$. In this case $L=1$. Suppose f can be written as a Fourier series. Let's find a_{m} and b_{m}. First,

$$
a_{0}=(f, 1)=\frac{1}{L} \int_{-1}^{1} f(x) d x=1
$$

For $n=1,2, \cdots$, we have

$$
\begin{aligned}
a_{n} & =\frac{1}{L}(f, \cos (n \pi x))=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
& =2 \int_{0}^{1} x \cos (n \pi x) d x \\
& =2\left(\left[\frac{x \sin (n \pi x)}{n \pi}\right]_{0}^{1}-\frac{1}{n \pi} \int_{0}^{1} \sin (n \pi x) d x\right) \\
& =\frac{2}{n^{2} \pi^{2}}(\cos (n \pi)-1) \\
& = \begin{cases}-\frac{4}{n^{2} \pi^{2}}, & m \text { is odd }, \\
0, & m \text { is even, }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
b_{n} & =\frac{1}{L}(f, \sin (n \pi x))=\int_{-1}^{1} f(x) \sin (n \pi x) d x \\
& =\int_{0}^{1} x \sin (n \pi x) d x-\int_{-1}^{0} x \sin (n \pi x) d x \\
& =\int_{0}^{1} x \sin (n \pi x) d x-\int_{0}^{1} x \sin (n \pi x) d x \\
& =0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f(x) & =\frac{1}{2}-\sum_{m=1, m \text { is odd }}^{\infty} \frac{4}{m^{2} \pi^{2}} \cos (m \pi x) \\
& =\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) \pi x)}{(2 k-1)^{2}}
\end{aligned}
$$

Example 2. Consider a periodic function f defined by

$$
f(x)= \begin{cases}1, & 0 \leq x<2 \\ -1, & -2 \leq x<0\end{cases}
$$

and $f(x+4)=f(x)$ for all $x \in \mathbb{R}$. In this case $L=2$. Suppose f can be written as a Fourier series. Let's find a_{m} and b_{m}. First,

$$
a_{0}=(f, 1)=\frac{1}{L} \int_{-2}^{2} f(x) d x=0
$$

For $n=1,2, \cdots$, we have

$$
\begin{aligned}
a_{n} & =\frac{1}{L}\left(f, \cos \left(\frac{n \pi x}{2}\right)\right) \\
& =\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x-\frac{1}{2} \int_{-2}^{0} \cos \left(\frac{n \pi x}{2}\right) d x \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
b_{n} & =\frac{1}{L}\left(f, \sin \left(\frac{n \pi x}{2}\right)\right) \\
& =\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) d x \\
& =-\frac{2}{n \pi}\left[\cos \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} \\
& =\frac{2}{n \pi}(1-\cos (n \pi)) \\
& = \begin{cases}\frac{4}{n \pi}, & m \text { is odd } \\
0, & m \text { is even. }\end{cases}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f(x) & =\sum_{m=1, m \text { is odd }}^{\infty} \frac{4}{m \pi} \sin \left(\frac{m \pi x}{2}\right) \\
& =\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin \left(\frac{(2 k-1) \pi x}{2}\right)
\end{aligned}
$$

Lecture 27. The Fourier Convergence Theorem (Sec 10.3)

Suppose a function f is given. If f is periodic with period $2 L>0$ and integrable on $[-L, L]$, then we can compute

$$
\begin{aligned}
& a_{n}=\frac{1}{L}\left(f, \cos \frac{n \pi x}{L}\right)=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& b_{n}=\frac{1}{L}\left(f, \sin \frac{n \pi x}{L}\right)=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Define

$$
S_{N}(x)=\frac{a_{0}}{2}+\sum_{m=1}^{N}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right)
$$

for each $N=1,2, \cdots$.

Question 3.

(i) Does $S_{N}(x)$ converge as $N \rightarrow \infty$ for each x ?
(ii) Suppose $S_{N}(x)$ converges to a function, say $S(x)$, as $N \rightarrow \infty$ for each x. Is the limit $S(x)$ equal to $f(x)$?

Definition 4. A function f is called piecewise continuous on an interval $[a, b]$ if there exists a partition of $[a, b], a=x_{0}<x_{1}<\cdots<x_{n}=b$ such that
(i) f is continuous on an open subinterval $\left(x_{i-1}, x_{i}\right)$ for each $i=1,2, \cdots, n$, and
(ii) the limits

$$
\lim _{x \rightarrow x_{i-1}+} f(x), \quad \lim _{x \rightarrow x_{i}-} f(x)
$$

are finite for each $i=1,2, \cdots, n$.
Example 5. Let $f(x)$ be a periodic function with period 2 defined by $f(x)=x$ on $[-1,1)$ and $f(x+2)=f(x)$, then it is piecewise continuous.

Example 6. Let $f(x)=\frac{1}{x}$ for $x \neq 0$, then it is not piecewise continuous.
Theorem 7. Suppose f and f^{\prime} are piecewise continuous on $[-L, L]$. Assume that f is periodic with period $2 L$, that is, $f(x+2 L)=f(x)$. Then, $S_{N}(x)$ converges to a function $S(x)$ as $N \rightarrow \infty$ for each x. Furthermore, $S(x)=f(x)$ if f is continuous at x and

$$
S(x)=\frac{1}{2}(f(x+)+f(x-))
$$

otherwise.

Example 8. Consider a periodic function f with period 2 defined by $f(x)=x$ on $[-1,1)$ and $f(x+2)=f(x)$. Note that f is discontinuous at $x=2 k-1, k \in \mathbb{Z}$. In this case $L=1$. Let's find a_{m} and b_{m}. First,

$$
a_{0}=(f, 1)=\frac{1}{L} \int_{-1}^{1} f(x) d x=0
$$

For $n=1,2, \cdots$, we have

$$
\begin{aligned}
a_{n} & =\frac{1}{L}(f, \cos (n \pi x))=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
& =\int_{-1}^{1} x \cos (n \pi x) d x \\
& =\left[\frac{x \sin (n \pi x)}{n \pi}\right]_{-1}^{1}-\frac{1}{n \pi} \int_{-1}^{1} \sin (n \pi x) d x \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
b_{n} & =\frac{1}{L}(f, \sin (n \pi x))=\int_{-1}^{1} f(x) \sin (n \pi x) d x \\
& =\int_{-1}^{1} x \sin (n \pi x) d x \\
& =\left[-\frac{x \cos (n \pi x)}{n \pi}\right]_{-1}^{1}+\frac{1}{n \pi} \int_{-1}^{1} \cos (n \pi x) d x \\
& =-\frac{2 \cos (n \pi)}{n \pi} \\
& =-\frac{2(-1)^{n}}{n \pi}
\end{aligned}
$$

Therefore,

$$
S_{N}(x)=-\frac{2}{\pi} \sum_{m=1}^{N} \frac{(-1)^{m}}{m} \sin (m \pi x)
$$

Since f satisfies the assumptions of the Fourier convergence theorem, we see that $S_{N}(x)$ converges to $S(x)$ as $N \rightarrow \infty$ for each x and

$$
f(x)=-\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m} \sin (m \pi x)
$$

for $x \neq 2 k-1, k \in \mathbb{Z}$. Note that $S(2 k-1)=0$ and

$$
\frac{1}{2}(f((2 k-1)+)+f((2 k-1)-))=\frac{1}{2}(-1+1)=0
$$

for all $k \in \mathbb{Z}$.
Example 9. Consider a periodic function f defined by

$$
f(x)= \begin{cases}x, & 0 \leq x<1 \\ -x, & -1 \leq x<0\end{cases}
$$

and $f(x+2)=f(x)$ for all $x \in \mathbb{R}$. We have seen that

$$
S_{N}(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{N} \frac{\cos ((2 k-1) \pi x)}{(2 k-1)^{2}}
$$

Since f satisfies the assumptions of the Fourier convergence theorem, we have

$$
f(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) \pi x)}{(2 k-1)^{2}}
$$

In particular, if $x=0$, then

$$
f(0)=0=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}
$$

and so

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8}
$$

Lecture 28. Even and Odd Functions (Sec 10.4)

Definition 10. A function f is called even if $f(-x)=f(x)$ for all x in the domain. A function f is called odd if $f(-x)=-f(x)$ for all x in the domain.

Example 11 (Even functions).
(i) $\cos (m x)$ for any m.
(ii) x^{k} for even integers k.
(iii) $f(x)+f(-x)$ for any function f.

Example 12 (Odd functions).
(i) $\sin (m x)$ and $\tan (m x)$ for any m.
(ii) x^{k} for odd integers k.
(iii) $f(x)-f(-x)$ for any function f.

Proposition 13. Let f, f_{1}, f_{2} be even and g, g_{1}, g_{2} be odd.
(i) $f_{1} \pm f_{2}, f_{1} f_{2}, g_{1} g_{2}, f_{1} / f_{2}, g_{1} / g_{2}$ are even functions.
(ii) $g_{1} \pm g_{2}, f g$, and f / g are odd functions.
(iii) If f and g are differentiable, then f^{\prime} is odd and g^{\prime} is even.
(iv) $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$ and $\int_{-L}^{L} g(x) d x=0$.

1 Fourier cosine series

Suppose f and f^{\prime} are piecewise continuous on $[-L, L]$. Assume that f is even and periodic with period $2 L$. That is, $f(x)=f(-x)$ and $f(x+2 L)=f(x)$ for all x. Since $f(x) \cos (m \pi x / L)$ is even and $f(x) \sin (m \pi x / L)$ is odd, we have $b_{m}=0$ for all $m=1,2, \cdots$. By the Fourier convergence theorem, we obtain

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}\right)
$$

Such a series is called a Fourier cosine series.

Example 14. Consider a periodic function f defined by

$$
f(x)= \begin{cases}x, & 0 \leq x<1 \\ -x, & -1 \leq x<0\end{cases}
$$

and $f(x+2)=f(x)$ for all $x \in \mathbb{R}$. Since f is even, f has a Fourier cosine series. Indeed, we have seen that

$$
f(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) \pi x)}{(2 k-1)^{2}}
$$

2 Fourier sine series

Suppose f and f^{\prime} are piecewise continuous on $[-L, L]$. Assume that f is odd and periodic with period $2 L$. That is, $f(x)=f(-x)$ and $f(x+2 L)=f(x)$ for all x. Since $f(x) \cos (m \pi x / L)$ is odd and $f(x) \sin (m \pi x / L)$ is even, we have $a_{m}=0$ for all $m=0,1,2, \cdots$. By the Fourier convergence theorem, we obtain

$$
f(x)=\sum_{m=1}^{\infty}\left(b_{m} \sin \frac{m \pi x}{L}\right)
$$

Such a series is called a Fourier sine series.
Example 15. Consider a periodic function f with period 2 defined by $f(x)=x$ on $[-1,1)$ and $f(x+2)=$ $f(x)$. Note that f is discontinuous at $x=2 k-1, k \in \mathbb{Z}$. Since f is odd, it has a Fourier sine series. Indeed, we have seen that

$$
f(x)=-\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m} \sin (m \pi x)
$$

for $x \neq 2 k-1, k \in \mathbb{Z}$.

3 Even and odd periodic extension

Suppose we are given a function f on $[0, L]$. We want to represent it as a Fourier series on $[0, L]$. To do this, we first extend f to be a periodic function. There are a lot of ways to do that. We assume that f is nice enough that the Fourier convergence theorem is applicable.

3.1 Extension to Cosine series

Define g by

$$
g(x)= \begin{cases}f(x), & 0 \leq x \leq L \\ f(-x), & -L \leq x<0\end{cases}
$$

and $g(x+2 L)=g(x)$. Then, $g(x)$ is an even periodic function with period $2 L$. Thus, it has a Fourier cosine series

$$
g(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \left(\frac{m \pi x}{L}\right)
$$

where

$$
a_{m}=\frac{1}{L} \int_{-L}^{L} g(x) \cos \left(\frac{m \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{m \pi x}{L}\right) d x
$$

In particular, if $x \in[0, L]$ then $g(x)=f(x)$ and so

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \left(\frac{m \pi x}{L}\right)
$$

This is called a Fourier cosine series of f.

3.2 Extension to Sine series

Define h by

$$
h(x)= \begin{cases}f(x), & 0 \leq x \leq L \\ -f(-x), & -L \leq x<0\end{cases}
$$

and $h(x+2 L)=h(x)$. Then, $h(x)$ is an odd periodic function with period $2 L$. Thus, it has a Fourier sine series

$$
h(x)=\sum_{m=1}^{\infty} b_{m} \sin \left(\frac{m \pi x}{L}\right)
$$

where

$$
b_{m}=\frac{1}{L} \int_{-L}^{L} h(x) \sin \left(\frac{m \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x
$$

In particular, if $x \in[0, L]$ then $h(x)=f(x)$ and so

$$
f(x)=\sum_{m=1}^{\infty} b_{m} \sin \left(\frac{m \pi x}{L}\right)
$$

This is called a Fourier sine series of f.
Example 16. Suppose $f(x)=x$ on $[0,1)$ and define $g(x)$ by $g(x+2)=g(x)$ and

$$
g(x)= \begin{cases}x, & 0 \leq x<1 \\ -x, & -1 \leq x<0\end{cases}
$$

We have seen that

$$
g(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) \pi x)}{(2 k-1)^{2}}
$$

If we extend f to be an odd periodic function h with period 2 as above, then

$$
h(x)=-\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m} \sin (m \pi x)
$$

for $x \neq 2 k-1, k \in \mathbb{Z}$. In particular, we have

$$
f(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) \pi x)}{(2 k-1)^{2}}=-\frac{2}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m} \sin (m \pi x)
$$

for $x \in[0,1)$.

References

[BD]
Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

