
Math 285 Lecture Note: Week 10

Daesung Kim

Lecture 23. Two-Point Boundary Value Problems, part 1 (Sec
10.1)

We consider y′′+p(t)y′+ q(t)y = g(t). Previously, the initial value problem refers the DE with the condition
of the form

y(t0) = y0, y′(t0) = y′0.

In this section, we will consider y′′ + p(x)y′ + q(x)y = g(x) with

y(α) = y0, y(β) = y1

for some α < β. This is call a two-point boundary value problem. Our goal is to find solutions y = φ(x)
that satisfies the DE in x ∈ (α, β) with the boundary condition.

Definition 1. A two-point boundary value problem is called homogeneous if g(t) = y0 = y1 = 0. Otherwise,
we call it nonhomogeneous.

It is natural to ask if the Existence and Uniqueness theorem is available. In general, the answer is no.
First, we consider nonhomogeneous case.

Example 2 (Nonhomogeneous with a unique solution). Consider y′′ + y = 0 with y(0) = 1 and y(π2 ) = 2.
Since the general solution is

y(x) = C1 cosx+ C2 sinx,

one can see that C1 = 1 and C2 = 2. This shows that there exists a unique solution.

Example 3 (Nonhomogeneous with infinitely many solution). Consider y′′ + y = 0 with y(0) = 1 and
y(π) = −1. Since the general solution is

y(x) = C1 cosx+ C2 sinx,

one can see that C1 = 1. Since there is no restriction on C2, there are infinitely many solutions.

Example 4 (Nonhomogeneous with no solutions). Consider y′′ + y = 0 with y(0) = 1 and y(π) = 2. Since
the general solution is

y(x) = C1 cosx+ C2 sinx,

there are no C1 and C2 that satisfy the boundary condition. This shows that the solution does not exist.

If the boundary problem is homogeneous, we always have a trivial solution, y(x) = 0.

Example 5 (Homogeneous with infinitely many solutions). Consider y′′+y = 0 with y(0) = 0 and y(π) = 0.
Since the general solution is

y(x) = C1 cosx+ C2 sinx,

we have C1 = 0. Since there is no restriction on C2, there are infinitely many solutions.
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Example 6 (Homogeneous with a unique solution). Consider y′′+y = 0 with y(0) = 0 and y(π2 ) = 0. Since
the general solution is

y(x) = C1 cosx+ C2 sinx,

one can see that C1 = C2 = 0. This shows that there exists a unique solution y(x) = 0.

Lecture 24. Two-Point Boundary Value Problems, part 2 (Sec
10.1)

In this section, we focus on a homogenous boundary value problem y′′ + λy = 0 with y(0) = 0 and y(L) = 0
for some L > 0.

Recall that a boundary value problem y′′ + p(x)y′ + q(x)y = g(x) with y(α) = y0 and y(β) = y1 is called
homogeneous if g(x) = 0 and y0 = y1 = 0. Otherwise, it is called nonhomogeneous.

If a boundary value problem is nonhomogeneous, it has (i) a unique solution, (ii) infinitely many solutions,
or (iii) no solutions. If it is homogeneous, the problem always has a trivial solution y = 0. So, it has (i) a
unique solution or (ii) infinitely many solutions.

Definition 7. Let y′′ + λy = 0 with y(0) = 0 and y(L) = 0 for L > 0. We call λ is an eigenvalue
of the boundary value problem if it has nontrivial solutions. The solutions are called the corresponding
eigenfunctions.

Our goal is to find all eigenvalues and eigenfunctions of y′′ + λy = 0 with y(0) = 0 and y(L) = 0 where
L > 0.

Case 1: λ > 0.

For notational simplicity, let λ = µ2 for µ ∈ R. The general solution to y′′ + µ2y = 0 is

y(x) = C1 cosµx+ C2 sinµx.

The boundary conditions yield C1 = 0 and

y(L) = C2 sinµL = 0.

If C2 6= 0, then µL = nπ for n ∈ N. Thus, if λ 6= n2(π/L)2 then the boundary value problem has a unique
trivial solution. The eigenvalues are λ = n2(π/L)2 for all n ∈ N and the corresponding eigenfunctions are
C sin(nπx/L).

Case 2: λ < 0.

Let λ = −µ2 for µ ∈ R. The general solution to y′′ − µ2y = 0 is

y(x) = C1 coshµx+ C2 sinhµx

where cosh(x) = 1
2 (ex + e−x) and sinh(x) = 1

2 (ex − e−x). The boundary conditions yield C1 = 0 and

y(L) = C2 sinhµL = 0.

Since L 6= 0, C2 = 0. Thus, the equation does not have nontrivial solutions. There is no negative eigenvalue.

Case 3: λ = 0.

The general solution to y′′ = 0 is y(x) = C1x + C2. The boundary conditions yield y(0) = C2 = 0 and
y(L) = C1L = 0. Thus, the equation does not have nontrivial solutions and so 0 is not an eigenvalue.

Remark 8. In general, let L[y] be a differential operator. For example, L[y] = −y′′ or L[y] = −x2y′′+ 2xy′.
Suppose boundary conditions are given by y(α) = y0 (or y′(α) = y0) and y(β) = y1 (or y′(β) = y1). Then,
λ is an eigenvalue of L[y] with the boundary conditions if L[y] = λy with the boundary conditions has
nontrivial solutions.
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Lecture 25. Fourier Series, part 1 (Sec 10.2)

1 Periodic functions

Definition 9. A function f is periodic with period T > 0 if

(i) x+ T belongs to the domain of f if x does, and

(ii) f(x+ T ) = f(x) for all x.

The smallest period T > 0 is called the fundamental period of f .

Example 10. It is easy to see that cos(mπx/L) and sin(mπx/L) are periodic with the same period 2L/m.

Proposition 11. If f and g are periodic functions with common period T , then so is c1f + c2g for any
c1, c2 ∈ R.

2 Inner product and Orthogonality

Definition 12. For functions f and g on [α, β], we define the standard inner product of f and g by

(f, g) =

∫ β

α

f(x)g(x) dx.

Remark 13. The inner product has the following properties:

(i) (Linearity) (cf + g, h) = c(f, h) + (g, h);

(ii) (Symmetry) (f, g) = (g, f);

(iii) (Positive-definite) (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0.

Indeed, if a relation (·, ·) satisfies these three assumptions, we call it an inner product. An elementary
example of inner product is dot product.

Definition 14. We say that functions f and g are orthogonal on [α, β] if (f, g) = 0. We say that a set of
functions are mutually orthogonal if any two functions in the set are orthogonal.

Example 15. One can see that

(
sin

mπx

L
, sin

nπx

L

)
=

∫ L

−L
sin

mπx

L
sin

nπx

L
dx =

{
0, m 6= n,

L, m = n,(
sin

mπx

L
, cos

nπx

L

)
= 0,(

cos
mπx

L
, cos

nπx

L

)
=

{
0, m 6= n,

L, m = n.

Thus, the set {sin mπx
L , cos mπxL : m ∈ Z} is mutually orthogonal.

3 Fourier series

Suppose that a function f can be written as

f(x) =
a0
2

+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
.
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Assume that the infinite sum in the RHS converges for each x ∈ [−L,L]. Note that f is periodic with period
2L. Our goal is to relate f with the coefficients am, bm. To this end, we compute

(f, cos
nπx

L
) =

∫ L

−L
f(x) cos

nπx

L
dx,

(f, sin
nπx

L
) =

∫ L

−L
f(x) sin

nπx

L
dx,

for each n = 0, 1, 2, · · · . In fact, we have

(f, cos
nπx

L
) =

a0
2

∫ L

−L
cos

nπx

L
dx+

∞∑
m=1

am

∫ L

−L
cos

mπx

L
cos

nπx

L
dx+

∞∑
m=1

bm

∫ L

−L
sin

mπx

L
cos

nπx

L
dx

= anL

by orthogonality for n ∈ N. (We note that the above computation is not rigorous. To be precise, one needs to
justify whether the infinite sum and integrals are interchangeable, and if the sum converges. This is beyond
the scope of the course.) Similarly,

(f, sin
nπx

L
) =

a0
2

∫ L

−L
sin

nπx

L
dx+

∞∑
m=1

am

∫ L

−L
cos

mπx

L
sin

nπx

L
dx+

∞∑
m=1

bm

∫ L

−L
sin

mπx

L
sin

nπx

L
dx

= bnL

for n ∈ N. If n = 0, then

(f, cos
nπx

L
) =

∫ L

−L
f(x) dx = a0L.

Therefore, we conclude that

an =
1

L
(f, cos

nπx

L
) =

1

L

∫ L

−L
f(x) cos

nπx

L
dx,

bn =
1

L
(f, sin

nπx

L
) =

1

L

∫ L

−L
f(x) sin

nπx

L
dx.

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edi-
tion, Wiley

Department of Mathematics, University of Illinois at Urbana-Champaign
E-mail address:daesungk@illinois.edu

4


	Two-Point Boundary Value Problems, part 1 (Sec 10.1)
	Two-Point Boundary Value Problems, part 2 (Sec 10.1)
	Fourier Series, part 1 (Sec 10.2)
	Periodic functions
	Inner product and Orthogonality
	Fourier series


