Solutions to Midterm 3

1. Suppose

$$
0<\lambda_{1}<\lambda_{2}<\cdots
$$

are the eigenvalues of $y^{\prime \prime}+\lambda y=0$ with $y(0)=y(\pi)=0$ in the interval $[0, \pi]$. Let $\varphi_{k}(x)$ be the eigenfunction associated to λ_{k}. What is the number of x 's in the interval $[0, \pi]$ such that $\varphi_{k}(x)=0$?

Solution: The k-th eigenvalue and eigenvector are $\lambda_{k}=k^{2}$ and $\varphi_{k}(x)=\sin (k x)$. Since $\sin (k x)=0$ for $x=\frac{i}{k} \pi$ for $i=0,1,2, \cdots, k$, the answer is $k+1$.
2. Let f and g be functions defined on \mathbb{R}. Which one of the followings is NOT correct?

Solution:

(i) If $f(x)=e^{x^{2}}$ and $g(x)=3 \cos (x)$, then $\int_{-1}^{1} f(x) g(x) d x=0$: False because f and g are even and strictly positive on $[0,1]$.
(ii) If f is odd, then $f(0)=0$: True. Since $f(x)=-f(-x)$ for all x, in particular, we have $f(0)=-f(-0)=-f(0)$, which implies $f(0)=0$.
(iii) If g is even, then x and $g(x)$ are orthogonal on $[-6,6]$ with respect to the inner product $\langle\varphi, \psi\rangle=\int_{-6}^{6} \varphi(x) \psi(x) d x$: True. Since x is odd and $g(x)$ is even, $x g(x)$ is odd. Thus, the integral of $x g(x)$ over $[-6,6]$ is zero.
(iv) If f is even and odd, then $f(x)=0$ for all $x \in \mathbb{R}$: True. Since f is even and odd, we have $f(x)=f(-x)=-f(-x)$ for all x. In particular, we have $f(x)=-f(x)$ for all x, which yields $f(x)=0$ for all x.
(v) If g is periodic with period 16 , then a function $h(x)=g(4 x-3)$ is also periodic with period 4: True. We have $h(x+4)=g(4(x+4)-3)=g((4 x-3)+16)=$ $g(4 x-3)=h(x)$.
3. Let $f(x)$ be a function on $[0,5]$ given by $f(x)=4 x$. Find the Fourier sine series for $f(x)$ of period 10 .

Solution: The sine series $S(x)$ is

$$
\begin{aligned}
S(x) & =\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{m \pi}{5} x\right) \\
C_{n} & =\frac{2}{L} \int_{0}^{5} f(x) \sin \left(\frac{m \pi}{5} x\right) \\
& =\frac{8}{5} \int_{0}^{5} x \sin \left(\frac{m \pi}{5} x\right)
\end{aligned}
$$

4. Consider the function $f(x)$ defined on \mathbb{R} such that $f(x)=f(x+8)$ and

$$
f(x)= \begin{cases}x-2, & -4 \leq x<0 \\ 1, & x=0 \\ x^{2}+10, & 0<x<4\end{cases}
$$

Let $S(x)$ be the Fourier series of $f(x)$. What is $S(12)$?

Solution: By the Fourier convergence theorem and the periodicity, we have

$$
\begin{aligned}
S(12) & =\frac{1}{2}(f(12-)+f(12+)) \\
& =\frac{1}{2}(f(4-)+f((-4)+)) \\
& =\frac{1}{2}\left(\lim _{x \rightarrow 4-}\left(x^{2}+10\right)+\lim _{x \rightarrow(-4)+}(x-2)\right) \\
& =\frac{1}{2}(26-6)=10
\end{aligned}
$$

5. What is the steady state solution $v(x)$ for the following heat conduction equation?

$$
\begin{cases}u_{x x}=4 u_{t}, & \text { for } 0<x<7, \quad t>0 \\ u(0, t)=8, & \text { for } t \geq 0 \\ u(7, t)=57, & \text { for } t \geq 0 \\ u(x, 0)=x^{2}+8, & \text { for } 0 \leq x \leq 7\end{cases}
$$

Solution: The steady state solution $v(x)$ is a solution to $v^{\prime \prime}=0$ with $v(0)=8$ and $v(7)=57$. Thus, $v(x)=a x+b, b=8$, and $v(7)=7 a+8=57$, that is $a=7$.
6. Consider the following equation for $y(x)$:

$$
y^{\prime \prime}+\lambda y=0
$$

and the following eigenfunctions: $y_{n}(x)=\sin \left(\frac{(2 n-1) \pi x}{2 L}\right), \quad n \geq 1$ Which boundary conditions would give the above eigenfunctions?
A. $y(0)=0 ; \quad y^{\prime}(L)=0$
B. None of these
C. $y^{\prime}(0)=0 ; \quad y^{\prime}(2 L)=0$
D. $y(0)=0 ; \quad y(L)=0$
E. $y(0)=0 ; \quad y^{\prime}(2 L)=0$

Solution: The boundary value problem $y^{\prime \prime}+\lambda y=0$ with $y(0)=0 ; \quad y^{\prime}(L)=0$ has no solutions for $\lambda<0$ and for $\lambda=0$. For $\lambda>0$ we have that the general solution to $y^{\prime \prime}+\lambda y=0$ is $y=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)$ and plugging $x=0$ gives $0=y(0)=c_{1}$ and using this and plugging in $x=L$

$$
0=y^{\prime}(L)=c_{2} \sqrt{\lambda} \cos (\sqrt{\lambda} L)
$$

which is possible if and only if $\sqrt{\lambda} L=\frac{2 n-1}{2} \pi$
7. Consider the following boundary value problem for $y(x): y^{\prime \prime}+y=a x^{2} y(0)=0 y(L)=$ $\beta \pi^{2}-\gamma$ Here $L=[\pi, \pi, \pi / 2] \beta=[c, 2 c, c] \gamma=[4 c, 8 c, 4 c]$
How many solutions does this problem have?
A. Infinite solutions (correct if $L=\pi, \beta=c, \gamma=4 c$)
B. No solution (correct if $L=\pi, \beta=2 c, \gamma=8 c$)
C. One solution(correct if $L=\frac{\pi}{2}, \beta=c, \gamma=4 c$)
D. Two solutions
E. Cannot be determined

Solution: The general solution to $y^{\prime \prime}+y=a x^{2}$ is $y=c_{1} \cos x+c_{2} \sin x+a x^{2}-2 a$ Imposing $y(0)=0$ we have $0=c_{1}-2 a$ or $c_{1}=2 a$ and imposing $0=y(L)$ we have $0=2 a \cos x+c_{2} \sin x+2 a L^{-} 2 a$ plugging in the various values for $L \beta$ and γ gives the result(s).
8. Find the solution $u(x, t)$ where $0<x<L$ and $t>0$ of the diffusion equationi/pis $u_{t}=\kappa u_{x x} u \prime(0, t)=0 ;, \quad u \prime(L, t)=0 ; \quad u(x, 0)=a$
A. $u(x, t)=a$
B. $u(x, t)=\sum_{m=1}^{\infty} a \frac{(n \pi)^{2}}{L} \sin \left(\frac{m \pi}{L x}\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} t}$
C. $u(x, t)=\sum_{m=1}^{\infty} a \frac{(n \pi)^{2}}{L} \cos \left(\frac{m \pi}{L x}\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} t}$
D. $u(x, t)=\sum_{m=1}^{\infty} a \sin \left(\frac{m \pi}{L x}\right) e^{-\frac{n^{2} \pi^{2}}{L^{2} t}}$
E. $u(x, t)=\sum_{m=1}^{\infty} a \sin \left(\frac{m \pi}{L x}\right) e^{-\frac{n^{2} \pi^{2}}{L^{2} t}}$

Solution:

The solution is $u(x, t)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{n} \frac{(n \pi)^{2}}{L} \cos \left(\frac{m \pi}{L x}\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} t}$ where $a_{n}=$ sine Fourier coefficients of a or

$$
a_{0}=\frac{2}{L} \int_{0}^{L} a d x=2 a \quad a_{n}=\frac{2}{L} \int_{0}^{L} a \cos \left(\frac{n \pi}{L x}\right) d x=0
$$

thus

$$
u(x, t)=a
$$

9. Let $\tilde{f}(x)$ be the even extension to the interval $-L<x<L$ of the function $f(x)=a x$ defined on $0<x<L$.
If the Fourier series of $\tilde{f}(x)$ in the interval $-L<x<L$ is

$$
S(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right)\right)
$$

find A_{n} and B_{n} for $n \geq 1$. You don't need to calculate A_{0}.

Solution:

Since the even extension is $\tilde{f}(x)=a|x|$ a straightforward calculation (done in the lectures) gives

$$
A_{n}=\frac{1}{L} \int_{-L}^{L} a|x| \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} a|x| \cos \left(\frac{n \pi x}{L}\right) d x=\frac{2 a L(\cos (n \pi)-1)}{\left(n^{2} \pi^{2}\right)}
$$

and

$$
B_{n}=\frac{1}{L} \int_{-L}^{L} a|x| \sin \left(\frac{n \pi x}{L}\right) d x=0
$$

where $i n t_{-L}^{L} a|x| \sin \left(\frac{n \pi x}{L}\right) d x=0$ because $i n t_{-L}^{L} a|x| \sin \left(\frac{n \pi x}{L}\right)=$ eve \times odd $=$ odd
10. Using separation of variables solve the following diffusion equation problem for $u(x, t)$ where $0<x<L$ and $t>0 u_{t}=\kappa u_{x x} u^{\prime}(0, t)=0 ; \quad u^{\prime}(L, t)=0 u(x, 0)=a x$ Assume that the solution has the form $u(x, t)=\sum_{n=1}^{\infty} C_{n} T_{n}(t) X_{n}(x)$ Calculate C_{n}, $T_{n}(t)$, and $X_{n}(x)$ for $n \geq 1$ (i.e., ignore $\left.C_{0}, T_{0}, X_{0}\right)$

Solution:

$$
C_{n}=\frac{2 a L(\cos (n \pi)-1)}{\left(n^{2} \pi^{2}\right)}, X_{n}=\cos \left(\frac{n \pi x}{L}\right), T_{n}=e^{-\frac{\kappa n^{2} \pi^{2} t}{L^{2}}}
$$

where the computation for C_{n} is the same as the one for B_{n} in the previous problem

