Solutions to Practice problems for midterm 3

1. Consider the function defined as

$$
f(x)= \begin{cases}x+a, & x \leq 0 \\ b-x, & x>0\end{cases}
$$

To which value will the Fourier Series expansion of $f(x)$ converge at $x=0$?

Solution: It converges to the average of the left and right limit at $x=0$, that is $\frac{1}{2}(f(0-)+f(0+))=\frac{a+b}{2}$.
2. Consider the function $f(x)=a$ for $0<x<L$. Which one is the Fourier cosine series expansion of $f(x)$?
A. a
B. 0
C. $\sum_{n=1}^{\infty} \frac{a}{n \pi} \cos \left(\frac{n \pi x}{L}\right)$
D. $\sum_{n=1}^{\infty} \frac{a}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{L}\right)$
E. $\sum_{n=1}^{\infty} \frac{-2 a}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{L}\right)$
F. $\sum_{n=1}^{\infty} \frac{-2 a[\cos (n \pi)-1]}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{L}\right)$

Solution: The Fourier cosine series $S(x)$ is

$$
S(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right), \quad a_{n}=\frac{2 a}{L} \int_{0}^{L} \cos \left(\frac{n \pi}{L} x\right) d x \text { for } n=0,1,2, \cdots
$$

Since $a_{n}=0$ for all $n=1,2, \cdots$ and $a_{0}=2 a$, we have $S(x)=a$ for all x.
3. Consider the following diffusion equation problem for $u(x, t)$:

$$
\left\{\begin{array}{l}
u_{t}=\gamma u_{x x} \\
u(0, t)=0 ; \\
u(x, 0)=\gamma x^{2}
\end{array} \quad u(L, t)=0\right.
$$

If you were to use separation of variables and write $u(x, t)=X(x) T(t)$, which would be the correct boundary conditions for $X(x)$?
A. $X(0)=0 ; \quad X(2 L)=0$
B. $X^{\prime}(0)=0 ; \quad X^{\prime}(L)=0$
C. $X^{\prime}(0)=0 ; \quad X^{\prime}(L)=0$
D. $X(0)=0 ; \quad X(\gamma)=0$
E. $X(0)=0 ; \quad X(L)=0$
F. $X^{\prime}(0)=0 ; \quad X^{\prime}(\gamma)=0$
G. None of these

Solution: Since

$$
u_{t}=X(x) T^{\prime}(t)=\gamma X^{\prime \prime}(x) T(t)=\gamma u_{x x}
$$

the separation of variable yields $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{1}{\gamma} \frac{T^{\prime}(t)}{T(t)}=-\lambda$. From the boundary conditions, we have $X(0) T(t)=0=X(L) T(t)$. If $X(0) \neq 0$ or $X(L) \neq 0$, then $T(t)=0$ so that $u(x, t)=0$. Thus, ther correct boundary conditions for X are $X(0)=X(L)=0$.
4. Consider the following boundary value problem for $y(x)$

$$
y^{\prime \prime}+y=a x
$$

with $y(0)=0$ and $y(L)=\beta \pi$. Here L is either $L=\pi$ or $L=\frac{\pi}{2}$ and β is either $\beta=a$ or $\beta=2 a$. How many solutions does this problem have?
A. Two solutions
B. Cannot be determined
C. No solution
D. Infinite solutions
E. One solution

Solution: The general solution is $y(x)=a x+C_{1} \cos (x)+C_{2} \sin (x)$. Since $y(0)=0$, we have $C_{1}=0$.
Suppose $L=\pi$. Then, $y(\pi)=a \pi=\beta \pi$. If $\beta=a$, then there are infinitely many solutions. If $\beta=2 a$, then there is no solution.
Suppose $L=\frac{\pi}{2}$. Then, $y\left(\frac{\pi}{2}\right)=\frac{\pi}{2} a+C_{2}=\beta \pi$. So, there is one solution.
5. Consider the following equation for $y(x)$:

$$
y^{\prime \prime}+\lambda y=0
$$

and the following eigenfunctions $y_{0}(x)=1$ and

$$
y_{n}(x)=\cos \left(\frac{n \pi x}{L}\right) .
$$

Which boundary conditions would give the above eigenfunctions?
A. $y^{\prime}(0)=0 ; \quad y^{\prime}(2 L)=0$
B. $y(0)=0 ; \quad y(L)=0$
C. $y(0)=0 ; \quad y(2 L)=0$
D. $y^{\prime}(0)=0 ; \quad y^{\prime}(L)=0$
E. None of these

Solution: One can see that

$$
y_{n}^{\prime}(x)=-\frac{n \pi}{L} \sin \left(\frac{n \pi x}{L}\right)
$$

and $y_{n}^{\prime}(0)=y_{n}^{\prime}(L)=0$.
6. Consider the following eigenvalue problem for $y(x)$:

$$
y^{\prime \prime}+\lambda y=0
$$

with $y(0)=0$ and $y^{\prime}(L)=0$. Which are the correct eigenvalues and corresponding eigenfunctions?
A. $\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}} ; \quad y_{n}(x)=\sin \left[\frac{(2 n-1) \pi x}{2 L}\right]$
B. $\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} ; \quad y_{n}(x)=\cos \left[\frac{n \pi x}{L}\right]$
C. $\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} ; \quad y_{n}(x)=\sin \left[\frac{n \pi x}{L}\right]$
D. $\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{2 L} ; \quad y_{n}(x)=\cos \left[\frac{(2 n-1) \pi x}{L}\right]$
E. None of these

Solution: One can see that λ should be positive. Let $\lambda=\mu^{2}$. The general solution is $y(x)=C_{1} \cos (\mu x)+C_{2} \sin (\mu x)$. Then, $y(0)=C_{1}=0$ and

$$
y^{\prime}(L)=C_{2} \mu \cos (\mu L)=0 .
$$

Since we are looking for nontrivial solutions and $C_{1}=0, C_{2}$ should be nonzero. Thus,

$$
\mu L=\frac{(2 n-1) \pi}{2}
$$

for $n=1,2, \cdots$.
7. Consider the function $f(x)=a$ for $0<x<L$. Which one is the Fourier sine series expansion of $f(x)$?
A. 0
B. $\sum_{n=1}^{\infty} \frac{a}{n \pi} \cos \left(\frac{n \pi x}{L}\right)$
C. $\sum_{n=1}^{\infty} \frac{-2 a[\cos (n \pi)-1]}{n \pi} \sin \left(\frac{n \pi x}{L}\right)$
D. $\sum_{n=1}^{\infty} \frac{a[\cos (n \pi)-1]}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{L}\right)$
E. $\sum_{n=1}^{\infty} \frac{a}{n \pi} \sin \left(\frac{n \pi x}{L}\right)$
F. $\sum_{n=1}^{\infty} \frac{-2 a}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{L}\right)$
G. None of these

Solution: The Fourier sine series $S(x)$ is

$$
S(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi}{L} x\right)
$$

with

$$
\begin{aligned}
a_{n} & =\frac{2 a}{L} \int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) d x \\
& =\frac{2 a}{L}\left(-\frac{L}{n \pi}\left[\cos \left(\frac{n \pi}{L} x\right)\right]_{0}^{L}\right) \int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) d x \\
& =-\frac{2 a}{n \pi}(\cos (n \pi)-1) .
\end{aligned}
$$

8. Determine for which value of a the following boundary value problem for $y(x)$ has solutions.

$$
y^{\prime \prime}+y=0, \quad y(0)=\alpha, \quad y(\pi)=a .
$$

Solution: The general solution is $y(x)=C_{1} \cos (x)+C_{2} \sin (x)$. By the boundary conditions, we have $C_{1}=\alpha$ and $-C_{1}=a$. If $a=-\alpha$, then there are infinitely many solutions. Otherwise, there is no solution.
9. Consider the diffusion equation problem for $u(x, t)$ below:

$$
\left\{\begin{array}{l}
u_{t}=\gamma u_{x x} \\
u(0, t)=a ; \\
u(x, 0)=\gamma x
\end{array} \quad u(L, t)=b\right.
$$

What is the steady state solution of this problem?

Solution: The steady state solution $v(x)$ is a solution to $v^{\prime \prime}=0$ with $v(0)=a$ and $v(L)=b$. Since the general solution is $v(x)=C_{1} x+C_{2}$, we get $v(x)=a+\frac{b-a}{L} x$.

