Solutions to Midterm 2

1. Which of the following are linearly dependent? Select all that apply.

Solution:

(i) $x^{2}, x+1, x^{2}+2 x+2$: Since $x^{2}+2(x+1)-\left(x^{2}+2 x+2\right)=0$, they are linearly dependent.
(ii) $e^{x}, 3 e^{x}-2 e^{-x}, 7 e^{x}+5 e^{-x}$: Since $-29 e^{x}+5\left(3 e^{x}-2 e^{-x}\right)+2\left(7 e^{x}+5 e^{-x}\right)=0$, they are linearly dependent.
(iii) $\cos (x), \sin (x),-\cos (x+2)$: Since $\cos (x+2)=\cos (2) \cos (x)-\sin (2) \sin (x)$, they are linearly dependent.
(iv) $\ln (2 x), 1, \ln (3 x)$: Since $\ln (2 x)-\ln (3 x)=\ln ((2 x) /(3 x))=\ln \left(\frac{2}{3}\right)$, they are linearly dependent.
(v) $\sin (x), \sin (2 x), \sin (3 x)$: Let $a \sin (x)+b \sin (2 x)+c \sin (3 x)=0$. Since this holds for all x, put $x=\frac{\pi}{2}$, then $a-c=0$. Put $x=\frac{\pi}{3}$, then $a+b=0$. Taking derivative on the LHS and putting $x=\frac{\pi}{2}$, then $b=0$. Therefore, we get $a=b=c=0$. They are linearly independent.
(vi) $\cos (x),-\tan (x), \cos (x)+2$: Let $a \cos (x)+b(-\tan (x))+c(\cos (x)+2)=0$. Putting $x=0$, we have $a+3 c=0$. Taking derivative and putting $x=0$, we have $b=0$. Thus, the equation can be written as $c(\cos (x)-1)=0$. If $x=\frac{\pi}{2}$, then $c=0$. Thus $a=b=c=0$ and so they are linearly independent.
(vii) $1, x, 2 x+x^{2}$: Let $a+b x+c\left(2 x+x^{2}\right)=0$. If $x=0$, then $a=0$. Taking derivatives on both sides, we get $b+c(2+2 x)=0$ and $2 c=0$. So we have $a=b=c=0$, which implies that they are linearly independent.
(viii) $x e^{2 x},-4 x, e^{2 x}$: Let $a x e^{2 x}+b(-4 x)+c\left(e^{2 x}\right)=0$. Putting $x=0$, we have $c=0$. Taking derivative and putting $x=0, a-4 b=0$. Repeating this, we end up with $a=b=c=0$, which implies that they are linearly independent.
(ix) $1+x^{2}+x^{4}, x^{2}+x^{4}, x^{4}$: The same method applies. They are linearly independent.
(x) $x, x \ln (2 x),(x+1) \ln (2 x)$: Let $a x+b x \ln (2 x)+c(x+1) \ln (2 x)=0$. Put $x=\frac{1}{2}$, then $a=0$. Taking derivative, we get

$$
b(\ln (2 x)+1)+c\left(\ln (2 x)+1+\frac{1}{x}\right)=0 .
$$

Let $x=\frac{1}{2}$, then we get $b+3 c=0$. Repeating this, we obtain $b-c=0$. Thus, $a=b=c=0$ and so they are linearly independent.
(xi) $(x+1)^{2},(x+2)^{2},(x+3)^{2}$: Let $a(x+1)^{2}+b(x+2)^{2}+c(x+3)^{2}=0$. Let $x=-1,-2,-3$, then $b+4 c=a+c=4 a+b=0$. Thus, $a=b=c=0$ and so they are linearly independent.
(xii) $e^{x}, e^{2 x}, e^{3 x}$: Let $a e^{x}+b e^{2 x}+c e^{3 x}=0$ repeat the previous procedure: taking derivative and putting $x=0$. So we obtain $a+b+c=a+2 b+3 c=a+4 b+9 c=$ 0 . Thus, $a=b=c=0$ and so they are linearly independent.
2. Identify the correct form of a particular solution to

$$
y^{\prime \prime}+6 y^{\prime}-7 y=3 x\left(e^{7 x}+3 e^{x}\right)+e^{x} .
$$

Solution: First, the fundamental solutions to the homogeneous equation are $e^{x}, e^{-7 x}$. The non-homogeneous terms are $(9 x+1) e^{x}$ and $3 x e^{7 x}$. For the first term, since e^{x} and $x e^{x}$ are solutions to the homogeneous equation, a particular solution is of the form

$$
Y_{1}(t)=x^{2}\left(B_{0}+B_{1} x\right) e^{x}
$$

For the second term, $e^{-7 x}$ is not a solution to the homogeneous equation so that

$$
Y_{2}(t)=\left(A_{0}+A_{1} x\right) e^{-7 x}
$$

3. Which of the following are correct? Select all that apply.

Solution:

(i) $u^{\prime \prime}+4 u=5 \cos (2 t)$ is in resonance.: This is true because $2=\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{4}{1}}$.
(ii) $u^{\prime \prime}+2 u^{\prime}+2 u=0$ is underdampted.: This is true because the equation has complex roots.
(iii) If $u(t)=-\cos (t)+\sqrt{3} \sin (t)=R \cos (t-\delta)$, then $R=2$: : This is true because $R=\sqrt{A^{2}+B^{2}}=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=2$.
(iv) The natural frequency of $3 u^{\prime \prime}+9 u=0$ is $\sqrt{3}$.: This is true because $\omega_{0}=\sqrt{\frac{k}{m}}=$ $\sqrt{\frac{9}{3}}=\sqrt{3}$.
(v) $u^{\prime \prime}+4 u^{\prime}+4 u=0$ is overdampted.: Since the equation has double roots, it is critically damped.
(vi) $u^{\prime \prime}+3 u^{\prime}+2 u=0$ is critically dampted.: Since the equation has distinct two real roots, it is overdamped.
(vii) $\sin (3 x)+\cos (3 x)=\sqrt{2} \cos \left(3 x+\frac{\pi}{4}\right)$: This is false because the RHS should be $\sqrt{2} \cos \left(3 x-\frac{\pi}{4}\right)$.
(viii) $\sin (3 x)+\sin (5 x)=\sin (4 x) \cos (x)$: This is false because the RHS should be $2 \sin (4 x) \cos (x)$.
(ix) The period of $4 u^{\prime \prime}+u=0$ is $\pi .:$ This is false because the period is $\frac{2 \pi}{\omega_{0}}$ and $\omega=\sqrt{\frac{k}{m}}=\frac{1}{2}$.
(x) The amplitude of $u(t)=2 \cos (2 t)-4 \sin (2 t)$ is $2^{2}+(-4)^{2}=20$.: The amplitude is $R=\sqrt{2^{2}+(-4)^{2}}=\sqrt{20}$.
4. Consider a differential equation

$$
y^{\prime \prime}-18 y^{\prime}+81 y=0
$$

Which of the following are solutions to the equation? Select all that apply.
(i) 0
(ii) $e^{-9 t}$
(iii) $e^{9 t}$
(iv) $t^{2} e^{9 t}$
(v) 1
(vi) $t e^{9 t}+3$
(vii) $(2 t+3) e^{9 t}$

Solution: Since the characteristic equation $r^{2}-18 r+81=0$ has double root $r=9$, the general solution is

$$
y(t)=e^{9 t}\left(C_{1}+C_{2} t\right)
$$

Thus, $0, e^{9 t}$, and $(2 t+3) e^{9 t}$ are solutions.
5. If $t=5 \ln x$, then

$$
\frac{d^{2} y}{d t^{2}}=F(x) \frac{d y}{d x}+G(x) \frac{d^{2} y}{d x^{2}} .
$$

Find $F(x)$ and $G(x)$.

Solution: Since $x=e^{t / 5}$, we have $\frac{d x}{d t}=\frac{1}{5} e^{\frac{t}{5}}=\frac{1}{5} x$. By chain rule and product rule, we have

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{1}{5} x \frac{d y}{d x}
$$

and

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}} & =\frac{d}{d t}\left(\frac{1}{5} x \frac{d y}{d x}\right) \\
& =\frac{1}{5} \frac{d x}{d t} \frac{d y}{d x}+\frac{1}{5} x \frac{d^{2} y}{d x^{2}} \frac{d x}{d t} \\
& =\frac{1}{25} x \frac{d y}{d x}+\frac{1}{25} x^{2} \frac{d^{2} y}{d x^{2}} .
\end{aligned}
$$

6. Consider an oscillator governed by

$$
y^{\prime \prime}+10 y^{\prime}+k y=0
$$

Let $D=10^{2}-4 k$. If $D>0$, then it is overdamped. If $D=0$, then it is critically damped. If $D<0$, then it is underdamped.
7. Which of the following statements are true?
(i) If f and g are differentiable functions defined on $(-1,1)$ and the Wronskian $W[f, g]=$ 0 on $(-1,1)$, then f and g are linearly dependent.
(ii) If $f(t)=e^{r t}$ and $g(t)=e^{s t}$, then $W[f, g](t) \neq 0$ for all real numbers t if and only if $r \neq s$.
(iii) $\{\cos (x), \cos (2 x), \cos (3 x)\}$ is linearly independent.

Solution:

(i) False: if $f(x)=x|x|$ and $g(x)=x^{2}$, then the Wronskian is zero but they are linearly independent.
(ii) Since $W[f, g](t)=(s-r) e^{(r+s) t}, W[f, g](t) \neq 0$ for all real numbers t if and only if $r \neq s$.
(iii) Let $a \cos (x)+b \cos (2 x)+c \cos (3 x)=0$. Putting $x=0, \frac{\pi}{2}, \frac{\pi}{6}$, we get $a+b+c=0$, $b=0$, and $\sqrt{3} a+b=0$. Solving the system of equations, we have $a=b=c=0$, which implies that $\{\cos (x), \cos (2 x), \cos (3 x)\}$ is linearly independent.
8. Consider the following initial value problem for $y(x)$:

$$
(x-9) y^{\prime \prime \prime}+\frac{10}{(x-15)} y^{\prime \prime}-\frac{14}{(x-8)} y^{\prime}+(x+15) y=\frac{(x-9)}{(x-14)}
$$

with initial conditions $y(10)=-2, y^{\prime}(10)=5, y^{\prime \prime}(10)=4$
On which interval are we guaranteed a unique solution?

Solution: Dividing by $(x-9)$ throughout the equation becomes

$$
y^{\prime \prime \prime}+\frac{10}{(x-15)(x-9)} y^{\prime \prime}-\frac{14}{(x-8)(x-9)} y^{\prime}+\frac{(x+15)}{(x-9)} y=\frac{(x-9)}{(x-14)(x-9)}
$$

which is of the form $y^{\prime \prime \prime}+p_{1}(x) y^{\prime \prime}+p_{2}(x) y^{\prime}+p_{3}(x) y=g(x)$. The theorem of existence and uniqueness for linear equations guarantees a unique solution as long as $p_{1}(x), p_{2}(x) p_{3}(x)$ and $g(x)$ are continuous. This happens for $x \neq-5,8,9,14$ and since we must take connected intervals, the connected interval in which the initial condition is imposed, namely $x_{0}=10$, is the interval $(9,14)$.
9. Consider the following oscillator equation for $x(t)$ and the given initial conditions: i / p; $x^{\prime \prime}+1600 x=5 \cos (41 t)$ with $x(0)=0 ; \quad x^{\prime}(0)=0$ What is the long term behavior of the solution?

Solution: The characteristic polynomial is $r^{2}+1600$ whose roots are $r= \pm 40 i$, therefore $\omega_{0}=40 \neq \omega=41$ The general solution is

$$
y(t)=A \cos (40 t-\delta)+A \cos (41 t)
$$

For some value of A (find it!) and therefore The solution will oscillate forever.
10. Consider $y_{1}=3|x| x$ and $y_{2}=3 x^{2}$ defined in $(-1,1)$. Are they lin. indep.? What is $W\left(y_{1}, y_{2}\right)$?

Solution: $y_{1}=3|x| x$ thus $y_{1}=-3 x^{2}$ for $x<0$ and $3 x^{2}$ for $x>0$. So $y_{1}^{\prime}=6|x|$ (which works at $x=0$ as well) and

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=18|x| x^{2}-18|x| x^{2}=0
$$

But they are linearly independent. In fact, if $0=a y_{1}+b y_{2}=3 a|x| x-3 b x^{2}$ and this last quantity equals $3(b-a) x^{2}$ if $x<0$ and $3(b+a) x^{2}$ if $x>0$ and therefore we have to have $a=b$ for $x<0$ and $a=-b$ for $x>0$. So for arbitrary x in $(-1,1)$ $a=b=0$.
11. Knowing that $y(x)=x^{4}(x>0)$ is a solution to

$$
x^{2} y^{\prime \prime}-12 x y^{\prime}+36 y=0, x>0
$$

use the substitution $y=x^{4} u(x)$ to find the solution to the initial value problem with $y(1)=0$ and $y^{\prime}(1)=5$.

Solution:

$$
\begin{aligned}
& y=x^{4} u(x) \text { so } y^{\prime}=x^{4} u(x)^{\prime}+4 x^{3} u \text { and } y^{\prime \prime}=x^{4} u^{\prime \prime}+8 x^{3} u^{\prime}+12 x^{2} u \text { and therefore } \\
& \qquad \begin{aligned}
0 & =x^{2} y^{\prime \prime}-12 x y^{\prime}+36 y \\
& =x^{6} u^{\prime \prime}+8 x^{5} u^{\prime}+12 x^{4} u-48 x^{4} u-12 x^{5} u^{\prime}+36 x^{4} u=x^{4}\left(x^{2} u^{\prime \prime}-4 x u^{\prime}\right) \\
& =x^{5}\left(x u^{\prime \prime}-4 u^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Therefore we must have $x u^{\prime \prime}=4 u^{\prime}=0$ and setting $v=u^{\prime}$,

$$
\frac{v^{\prime}}{v}=\frac{4}{x}
$$

whence $v=A x^{4}$ and by integrating $u=c_{1} x^{5}+c_{2}$ which yields the general solution

$$
y=c_{1} x^{9}+c_{2} x^{4}
$$

Imposing the initial. condition we find $c_{1}=1$ and $c_{2}=-1$ and

$$
y=x^{9}-x^{4}
$$

12. Calculate the steady state solution for the forced damped oscillator described by the following equation for $x(t)$:

$$
x^{\prime \prime}+4 x^{\prime}+3 x=65 \cos (2 t)
$$

Solution: The characteristic polynomial is $r^{2}+4 r+3=(r+3)(r+1)$ so the steady state solution, is obtained by plugging in $x_{s}=A \cos (2 t)+B \sin (2 t)$ in the equation. We have $x_{s}^{\prime}=-2 A \sin (2 t)+2 B \cos (2 t)$ and $x_{s}^{\prime \prime}=-4 \cos (2 t)-4 \sin (2 t)$ and therefore

$$
x_{s}^{\prime \prime}+4 x_{s}^{\prime}+3 x_{s}=(8 B-A) \cos (2 t)+(8 A+B) \sin (2 t)
$$

For $(8 B-A) \cos (2 t)-(8 A+B) \sin (2 t)$ to equal $65 \cos (2 t)$ we must have $8 B-A=1$ and $(8 A+B)=0$ which yields $A=-1$ and $B=8$ and so

$$
x_{s}=-\cos (2 t)+8 \sin (2 t)
$$

13. Find two values r and $s(r<s)$ for which $y_{1}=x^{r}$ and $y_{2}=x^{s}$ are fundamental solutions of the differential equation

$$
x^{2} y^{\prime \prime}-18 x y^{\prime}+60 y=0, x>0 .
$$

Solution: Take $y=x^{r}$ and differentiate it twice: $y^{\prime}=r x^{r-1} \quad y^{\prime \prime}=r(r-1) x^{r-2}$ and plug into the equation

$$
0=x^{r}(r(r-1)-18 r+60)=x^{r}\left(r^{2}-19 r+60\right)
$$

and so it's a solution if and only if $r^{2}-19 r+60=(r-4)(r-15)=0$ which means $r=4$ and $s=15$.

