Math 285 Midterm 2 Practice Exam

1. The existence and uniqueness theorem guarantees that there exists a unique solution of the initial value problem $(t-1)(t+3) y^{\prime \prime \prime}+t y^{\prime}+t e^{-t^{2}} y=\ln |t-4|$ with $y(2)=2$, $y^{\prime}(2)=1$, and $y^{\prime \prime}(2)=0$ on an open interval
A. $(1,4)$
B. $(-\infty,-3)$
C. $(-3,1)$
D. $(4, \infty)$
E. None of these
2. If the general solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ is $y(t)=e^{3 t}\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right)$, what are the value of p and q ?
A. $p=-6$ and $q=5$
B. $p=-6$ and $q=13$
C. $p=6$ and $q=13$
D. $p=6$ and $q=5$
E. None of these
3. The initial value problem

$$
u^{\prime \prime}+4 u=3 \cos t
$$

with $u(0)=u^{\prime}(0)=0$ has the solution $u(t)=\cos t-\cos 2 t$. This can be written as a product of trigonometric functions
A. $2 \cos \left(\frac{3}{2} t\right) \sin \left(\frac{1}{2} t\right)$
B. $\sin \left(\frac{3}{2} t\right) \sin \left(\frac{1}{2} t\right)$
C. $2 \sin \left(\frac{3}{2} t\right) \sin \left(\frac{1}{2} t\right)$
D. $\sin \left(\frac{3}{2} t\right) \cos \left(\frac{1}{2} t\right)$
E. None of these
4. Identify the correct form of a particular solution for the following differential equation.

$$
y^{\prime \prime}+2 y^{\prime}=t e^{2 t}+10 t^{3}
$$

A. $Y(t)=A t^{2} e^{2 t}+B t e^{2 t}+C+D t+E t^{2}+F t^{3}$
B. $Y(t)=A t e^{2 t}+B e^{2 t}+C+D t+E t^{2}+F t^{3}$
C. $Y(t)=A t^{2} e^{2 t}+B t e^{2 t}+C t+D t^{2}+E t^{3}+F t^{4}$
D. $Y(t)=A t e^{2 t}+B e^{2 t}+C t+D t^{2}+E t^{3}+F t^{4}$
E. None of these
5. For which value of k is the following oscillator in resonance?

$$
u^{\prime \prime}+k u=3 \cos (2 t)
$$

A. $k=1$
B. $k=2$
C. $k=9$
D. None of these
E. $k=4$
6. The differential equation

$$
u^{\prime \prime}+5 u^{\prime}+9 u=0
$$

corresponds to an oscillator that is
A. undamped
B. underdamped
C. overdamped
D. critically damped
E. None of these
7. The function $u(t)=-3 \sqrt{3} \cos t+3 \sin t$ can be written as $u(t)=R \cos \left(\omega_{0} t-\delta\right)$ where
A. $R=6, \omega_{0}=1, \delta=11 \pi / 6$
B. $R=3, \omega_{0}=1, \delta=\pi / 6$
C. $R=3, \omega_{0}=1, \delta=7 \pi / 6$
D. $R=6, \omega_{0}=1, \delta=5 \pi / 6$
E. None of these
8. Which of these is NOT a set of linearly independent solutions?
A. $e^{x}, 2 e^{x}-e^{2 x}, e^{x}+3 e^{2 x}$
B. $x, x^{2}+x, 2 x^{3}$
C. $\cos x, \sin x, \cos 2 x$
D. $2, x, x \ln x$
E. None of these
9. The third order differential equation

$$
y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y=0
$$

has the characteristic equation $(\lambda+1)\left(\lambda^{2}+4 \lambda+5\right)=0$. What is the general solution to the differential equation?
A. $C_{1} e^{-t}+C_{2} e^{t}+C_{3} e^{-5 t}$
B. $C_{1} e^{t}+C_{2} e^{-2 t} \cos t+C_{3} e^{-2 t} \sin t$
C. $C_{1} e^{-t}+C_{2} e^{-2 t} \cos t+C_{3} e^{-2 t} \sin t$
D. $C_{1} e^{t}+C_{2} e^{t}+C_{3} e^{-5 t}$
E. None of these
10. Find the solution to the following initial value problem

$$
y^{\prime \prime}-6 y^{\prime}+9 y=2 t e^{3 t}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

11. Consider $t^{2} y^{\prime \prime}-5 t y^{\prime}+9 y=0$ for $t>0$.
12. Find r such that $y_{1}(t)=t^{r}$ is a solution to the equation.
13. Find another solution y_{2} to the equation such that $W\left[y_{1}, y_{2}\right](t) \neq 0$. (Hint: use the method of reduction of order.)
