Math 285 Midterm 2 Practice Exam

- 1. The existence and uniqueness theorem guarantees that there exists a unique solution of the initial value problem $(t-1)(t+3)y''' + ty' + te^{-t^2}y = \ln|t-4|$ with y(2) = 2, y'(2) = 1, and y''(2) = 0 on an open interval
 - A. (1, 4)B. $(-\infty, -3)$ C. (-3, 1)D. $(4, \infty)$
 - E. None of these

Solution: After dividing by (t-1)(t+3), the coefficients are continuous if $t \neq 1, -3, 4$. Since the initial conditions are given at t = 2, the interval is (1, 4).

- 2. If the general solution of y'' + py' + qy = 0 is $y(t) = e^{3t}(C_1 \cos 2t + C_2 \sin 2t)$, what are the value of p and q?
 - A. p = -6 and q = 5
 B. p = -6 and q = 13
 C. p = 6 and q = 13
 - D. p = 6 and q = 5
 - E. None of these

Solution: Since the roots for the characteristic equation are $\lambda = -2 \pm i$, the general solution is

$$y(t) = e^{-2t}(C_1 \cos t + C_2 \sin t).$$

3. The initial value problem

$$u'' + 4u = 3\cos t$$

with u(0) = u'(0) = 0 has the solution $u(t) = \cos t - \cos 2t$. This can be written as a product of trigonometric functions

A. $2\cos\left(\frac{3}{2}t\right)\sin\left(\frac{1}{2}t\right)$ B. $\sin\left(\frac{3}{2}t\right)\sin\left(\frac{1}{2}t\right)$ C. $2\sin\left(\frac{3}{2}t\right)\sin\left(\frac{1}{2}t\right)$

- D. $\sin\left(\frac{3}{2}t\right)\cos\left(\frac{1}{2}t\right)$
- E. None of these

Solution: This follows from

$$\cos(\omega t) - \cos(\omega_0 t) = 2\sin\left(\frac{\omega + \omega_0}{2}t\right)\sin\left(\frac{\omega_0 - \omega}{2}t\right).$$

4. Identify the correct form of a particular solution for the following differential equation.

$$y'' + 2y' = te^{2t} + 10t^3$$

A.
$$Y(t) = At^2e^{2t} + Bte^{2t} + C + Dt + Et^2 + Ft^3$$

B. $Y(t) = Ate^{2t} + Be^{2t} + C + Dt + Et^2 + Ft^3$
C. $Y(t) = At^2e^{2t} + Bte^{2t} + Ct + Dt^2 + Et^3 + Ft^4$
D. $Y(t) = Ate^{2t} + Be^{2t} + Ct + Dt^2 + Et^3 + Ft^4$
E. None of these

Solution: Since the homogeneous equation y'' + 2y' = 0 has solutions $1, e^{-2t}$, a particular solution is of the form

$$Y(t) = Ate^{2t} + Be^{2t} + Ct + Dt^2 + Et^3 + Ft^4.$$

5. For which value of k is the following oscillator in resonance?

$$u'' + ku = 3\cos(2t).$$

A.
$$k = 1$$

B. $k = 2$
C. $k = 9$
D. None of these
E. $k = 4$

Solution: The oscillator is in resonance if

$$\omega_0 = \sqrt{\frac{k}{m}} = \omega.$$

6. The differential equation

$$u'' + 5u' + 9u = 0$$

corresponds to an oscillator that is

- A. undamped
- B. underdamped
- C. overdamped
- D. critically damped
- E. None of these

Solution: The characteristic equation $\lambda^2 + 5\lambda + 9 = 0$ has complex roots.

7. The function $u(t) = -3\sqrt{3}\cos t + 3\sin t$ can be written as $u(t) = R\cos(\omega_0 t - \delta)$ where

- A. $R = 6, \, \omega_0 = 1, \, \delta = 11\pi/6$
- B. $R = 3, \, \omega_0 = 1, \, \delta = \pi/6$
- C. $R = 3, \, \omega_0 = 1, \, \delta = 7\pi/6$
- **D.** $R = 6, \ \omega_0 = 1, \ \delta = 5\pi/6$
- E. None of these

Solution: It is easy to check that $R = \sqrt{(-3\sqrt{3})^2 + 3^2} = 6$ and $\omega_0 = 2$. If $\cos(\delta) = -\frac{\sqrt{3}}{2}$ and $\sin(\delta) = 1/2$, then $\delta = 5\pi/6$.

- 8. Which of these is NOT a set of linearly independent solutions?
 - A. $e^{x}, 2e^{x} e^{2x}, e^{x} + 3e^{2x}$ B. $x, x^{2} + x, 2x^{3}$ C. $\cos x, \sin x, \cos 2x$
 - D. 2, $x, x \ln x$
 - E. None of these

Solution: The set $\{e^x, 2e^x - e^{2x}, e^x + 3e^{2x}\}$ is linearly dependent because $k_1e^x + k_2(2e^x - e^{2x}) + k_3(e^x + 3e^{2x}) = 0$ holds for all x if $k_1 = -7$, $k_2 = 3$, and $k_3 = 1$.

9. The third order differential equation

$$y''' + py'' + qy' + ry = 0$$

has the characteristic equation $(\lambda + 1)(\lambda^2 + 4\lambda + 5) = 0$. What is the general solution to the differential equation?

- A. $C_1 e^{-t} + C_2 e^t + C_3 e^{-5t}$ B. $C_1 e^t + C_2 e^{-2t} \cos t + C_3 e^{-2t} \sin t$ C. $C_1 e^{-t} + C_2 e^{-2t} \cos t + C_3 e^{-2t} \sin t$ D. $C_1 e^t + C_2 e^t + C_3 e^{-5t}$
- E. None of these

Solution: Since the roots are $\lambda = -1, -2 \pm i$. Thus, the general solution is

$$y(t) = C_1 e^{-t} + C_2 e^{-2t} \cos t + C_3 e^{-2t} \sin t.$$

10. Find the solution to the following initial value problem

$$y'' - 6y' + 9y = 2te^{3t}, \qquad y(0) = 1, \qquad y'(0) = 0.$$

Solution: The general solution of y'' - 6y' + 9y = 0 is $C_1e^{3t} + C_2te^{3t}$. By the method of undetermined coefficients, a particular solution has a form

$$Y(t) = t^2 (At + B)e^{3t} = (At^3 + Bt^2)e^{3t}.$$

We then have

$$\begin{split} Y'' - 6Y' + 9Y &= \left((6At + 2B)e^{3t} + 6(3At^2 + 2Bt)e^{3t} + 9(At^3 + Bt^2)e^{3t} \right) \\ &\quad - 6((3At^2 + 2Bt)e^{3t} + 3(At^3 + Bt^2)e^{3t}) + 9(At^3 + Bt^2)e^{3t} \\ &= (6At + 2B)e^{3t} \\ &= 2te^{3t}, \end{split}$$

which means $A = \frac{1}{3}$ and B = 0. Thus, the solution is

$$y(t) = C_1 e^{3t} + C_2 t e^{3t} + \frac{1}{3} t^3 e^{3t}.$$

By the initial conditions,

$$y(t) = e^{3t} - 3te^{3t} + \frac{1}{3}t^3e^{3t}$$

- 11. Consider $t^2y'' 5ty' + 9y = 0$ for t > 0.
 - 1. Find r such that $y_1(t) = t^r$ is a solution to the equation.
 - 2. Find another solution y_2 to the equation such that $W[y_1, y_2](t) \neq 0$. (Hint: use the method of reduction of order.)

Solution:

1. Since

$$t^{2}y_{1}'' - 5ty_{1}' + 9y_{1} = r(r-1)t^{r} - 5rt^{r} + 9t^{r}$$
$$= t^{r}(r^{2} - 6r + 9)$$
$$= 0,$$

we obtain r = 3.

2. Let $y_2 = vy_1$, then

$$t^{2}y_{2}'' - 5ty_{2}' + 9y_{2} = t^{2}(v''y_{1} + 2v'y_{1}' + vy_{1}'') - 5t(v'y_{1} + vy_{1}') + 9vy_{1}$$

= $t^{5}v'' + t^{4}v'$
= $t^{4}(tv'' + v')$
= 0.

Thus, tv'' + v' = 0. By solving the equation, we get $v(t) = C_1 \ln t + C_2$. Let $y_2 = t^3 \ln t$, then y_2 is a solution and

$$W[y_1, y_2] = t^3 (3t^2 \ln t + t^2) - 3t^2 (t^3 \ln t)$$

= t⁵.