## Math 285 Midterm 2 Practice Exam

1. The existence and uniqueness theorem guarantees that there exists a unique solution of the initial value problem $(t-1)(t+3) y^{\prime \prime \prime}+t y^{\prime}+t e^{-t^{2}} y=\ln |t-4|$ with $y(2)=2$, $y^{\prime}(2)=1$, and $y^{\prime \prime}(2)=0$ on an open interval
A. $(1,4)$
B. $(-\infty,-3)$
C. $(-3,1)$
D. $(4, \infty)$
E. None of these

Solution: After dividing by $(t-1)(t+3)$, the coefficients are continuous if $t \neq$ $1,-3,4$. Since the initial conditions are given at $t=2$, the interval is $(1,4)$.
2. If the general solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ is $y(t)=e^{3 t}\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right)$, what are the value of $p$ and $q$ ?
A. $p=-6$ and $q=5$
B. $p=-6$ and $q=13$
C. $p=6$ and $q=13$
D. $p=6$ and $q=5$
E. None of these

Solution: Since the roots for the characteristic equation are $\lambda=-2 \pm i$, the general solution is

$$
y(t)=e^{-2 t}\left(C_{1} \cos t+C_{2} \sin t\right)
$$

3. The initial value problem

$$
u^{\prime \prime}+4 u=3 \cos t
$$

with $u(0)=u^{\prime}(0)=0$ has the solution $u(t)=\cos t-\cos 2 t$. This can be written as a product of trigonometric functions
A. $2 \cos \left(\frac{3}{2} t\right) \sin \left(\frac{1}{2} t\right)$
B. $\sin \left(\frac{3}{2} t\right) \sin \left(\frac{1}{2} t\right)$
C. $2 \sin \left(\frac{3}{2} t\right) \sin \left(\frac{1}{2} t\right)$
D. $\sin \left(\frac{3}{2} t\right) \cos \left(\frac{1}{2} t\right)$
E. None of these

Solution: This follows from

$$
\cos (\omega t)-\cos \left(\omega_{0} t\right)=2 \sin \left(\frac{\omega+\omega_{0}}{2} t\right) \sin \left(\frac{\omega_{0}-\omega}{2} t\right) .
$$

4. Identify the correct form of a particular solution for the following differential equation.

$$
y^{\prime \prime}+2 y^{\prime}=t e^{2 t}+10 t^{3}
$$

A. $Y(t)=A t^{2} e^{2 t}+B t e^{2 t}+C+D t+E t^{2}+F t^{3}$
B. $Y(t)=A t e^{2 t}+B e^{2 t}+C+D t+E t^{2}+F t^{3}$
C. $Y(t)=A t^{2} e^{2 t}+B t e^{2 t}+C t+D t^{2}+E t^{3}+F t^{4}$
D. $Y(t)=A t e^{2 t}+B e^{2 t}+C t+D t^{2}+E t^{3}+F t^{4}$
E. None of these

Solution: Since the homogeneous equation $y^{\prime \prime}+2 y^{\prime}=0$ has solutions $1, e^{-2 t}$, a particular solution is of the form

$$
Y(t)=A t e^{2 t}+B e^{2 t}+C t+D t^{2}+E t^{3}+F t^{4}
$$

5. For which value of $k$ is the following oscillator in resonance?

$$
u^{\prime \prime}+k u=3 \cos (2 t)
$$

A. $k=1$
B. $k=2$
C. $k=9$
D. None of these
E. $k=4$

Solution: The oscillator is in resonance if

$$
\omega_{0}=\sqrt{\frac{k}{m}}=\omega .
$$

6. The differential equation

$$
u^{\prime \prime}+5 u^{\prime}+9 u=0
$$

corresponds to an oscillator that is
A. undamped
B. underdamped
C. overdamped
D. critically damped
E. None of these

Solution: The characteristic equation $\lambda^{2}+5 \lambda+9=0$ has complex roots.
7. The function $u(t)=-3 \sqrt{3} \cos t+3 \sin t$ can be written as $u(t)=R \cos \left(\omega_{0} t-\delta\right)$ where
A. $R=6, \omega_{0}=1, \delta=11 \pi / 6$
B. $R=3, \omega_{0}=1, \delta=\pi / 6$
C. $R=3, \omega_{0}=1, \delta=7 \pi / 6$
D. $R=6, \omega_{0}=1, \delta=5 \pi / 6$
E. None of these

Solution: It is easy to check that $R=\sqrt{(-3 \sqrt{3})^{2}+3^{2}}=6$ and $\omega_{0}=2$. If $\cos (\delta)=$ $-\frac{\sqrt{3}}{2}$ and $\sin (\delta)=1 / 2$, then $\delta=5 \pi / 6$.
8. Which of these is NOT a set of linearly independent solutions?
A. $e^{x}, 2 e^{x}-e^{2 x}, e^{x}+3 e^{2 x}$
B. $x, x^{2}+x, 2 x^{3}$
C. $\cos x, \sin x, \cos 2 x$
D. $2, x, x \ln x$
E. None of these

Solution: The set $\left\{e^{x}, 2 e^{x}-e^{2 x}, e^{x}+3 e^{2 x}\right\}$ is linearly dependent because

$$
k_{1} e^{x}+k_{2}\left(2 e^{x}-e^{2 x}\right)+k_{3}\left(e^{x}+3 e^{2 x}\right)=0
$$

holds for all $x$ if $k_{1}=-7, k_{2}=3$, and $k_{3}=1$.
9. The third order differential equation

$$
y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y=0
$$

has the characteristic equation $(\lambda+1)\left(\lambda^{2}+4 \lambda+5\right)=0$. What is the general solution to the differential equation?
A. $C_{1} e^{-t}+C_{2} e^{t}+C_{3} e^{-5 t}$
B. $C_{1} e^{t}+C_{2} e^{-2 t} \cos t+C_{3} e^{-2 t} \sin t$
C. $C_{1} e^{-t}+C_{2} e^{-2 t} \cos t+C_{3} e^{-2 t} \sin t$
D. $C_{1} e^{t}+C_{2} e^{t}+C_{3} e^{-5 t}$
E. None of these

Solution: Since the roots are $\lambda=-1,-2 \pm i$. Thus, the general solution is

$$
y(t)=C_{1} e^{-t}+C_{2} e^{-2 t} \cos t+C_{3} e^{-2 t} \sin t .
$$

10. Find the solution to the following initial value problem

$$
y^{\prime \prime}-6 y^{\prime}+9 y=2 t e^{3 t}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: The general solution of $y^{\prime \prime}-6 y^{\prime}+9 y=0$ is $C_{1} e^{3 t}+C_{2} t e^{3 t}$. By the method of undetermined coefficients, a particular solution has a form

$$
Y(t)=t^{2}(A t+B) e^{3 t}=\left(A t^{3}+B t^{2}\right) e^{3 t}
$$

We then have

$$
\begin{aligned}
Y^{\prime \prime}-6 Y^{\prime}+9 Y= & \left((6 A t+2 B) e^{3 t}+6\left(3 A t^{2}+2 B t\right) e^{3 t}+9\left(A t^{3}+B t^{2}\right) e^{3 t}\right) \\
& -6\left(\left(3 A t^{2}+2 B t\right) e^{3 t}+3\left(A t^{3}+B t^{2}\right) e^{3 t}\right)+9\left(A t^{3}+B t^{2}\right) e^{3 t} \\
= & (6 A t+2 B) e^{3 t} \\
= & 2 t e^{3 t},
\end{aligned}
$$

which means $A=\frac{1}{3}$ and $B=0$. Thus, the solution is

$$
y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}+\frac{1}{3} t^{3} e^{3 t} .
$$

By the initial conditions,

$$
y(t)=e^{3 t}-3 t e^{3 t}+\frac{1}{3} t^{3} e^{3 t}
$$

11. Consider $t^{2} y^{\prime \prime}-5 t y^{\prime}+9 y=0$ for $t>0$.
12. Find $r$ such that $y_{1}(t)=t^{r}$ is a solution to the equation.
13. Find another solution $y_{2}$ to the equation such that $W\left[y_{1}, y_{2}\right](t) \neq 0$. (Hint: use the method of reduction of order.)

## Solution:

1. Since

$$
\begin{aligned}
t^{2} y_{1}^{\prime \prime}-5 t y_{1}^{\prime}+9 y_{1} & =r(r-1) t^{r}-5 r t^{r}+9 t^{r} \\
& =t^{r}\left(r^{2}-6 r+9\right) \\
& =0,
\end{aligned}
$$

we obtain $r=3$.
2. Let $y_{2}=v y_{1}$, then

$$
\begin{aligned}
t^{2} y_{2}^{\prime \prime}-5 t y_{2}^{\prime}+9 y_{2} & =t^{2}\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)-5 t\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+9 v y_{1} \\
& =t^{5} v^{\prime \prime}+t^{4} v^{\prime} \\
& =t^{4}\left(t v^{\prime \prime}+v^{\prime}\right) \\
& =0
\end{aligned}
$$

Thus, $t v^{\prime \prime}+v^{\prime}=0$. By solving the equation, we get $v(t)=C_{1} \ln t+C_{2}$. Let $y_{2}=t^{3} \ln t$, then $y_{2}$ is a solution and

$$
\begin{aligned}
W\left[y_{1}, y_{2}\right] & =t^{3}\left(3 t^{2} \ln t+t^{2}\right)-3 t^{2}\left(t^{3} \ln t\right) \\
& =t^{5} .
\end{aligned}
$$

