Solutions to Midterm 1

1. If $v(x)=\frac{y(x)}{x^{2}}$, then

$$
x y^{\prime}=2 y+3 y^{2}+6 x^{4}
$$

can be transformed into
A. $v^{\prime}=3 x\left(v^{2}+2\right)$
B. $v^{\prime}=3 v^{2}+6$
C. $x v^{\prime}=2 v+3 x^{2}\left(v^{2}+2\right)$
D. None of these
E. $x v^{\prime}=3 v^{2}+6 x^{2}$

Solution: Since $v(x)=\frac{y(x)}{x^{2}}$, we have $y=x^{2} v$ and $y^{\prime}=x^{2} v^{\prime}+2 x v$. So, the given equation can be written as

$$
x y^{\prime}=x^{3} v^{\prime}+2 x^{2} v=2 x^{2} v+3 x^{4} v^{2}+6 x^{4}=2 y+3 y^{2}+6 x^{4} .
$$

Dividing x^{2} both sides, we get

$$
x v^{\prime}+2 v=2 v+3 x^{2} v^{2}+6 x^{2}=2 v+3 x^{2}\left(v^{2}+2\right)
$$

as desired.
2. Determine the stability of the equilibrium of the following equation for $P(t)$.

$$
\frac{d P}{d t}=2 P(P+3)(P-1) .
$$

A. $P(t)=-3$ and $P(t)=1$ are unstable and $P(t)=0$ asymptotically stable.
B. $P(t)=-3, P(t)=1, P(t)=0$ are unstable.
C. $P(t)=-3$ and $P(t)=1$ are asymptotically stable and $P(t)=0$ is unstable.
D. None of these.
E. $P(t)=-3$ and $P(t)=0$ are unstable and $P(t)=1$ asymptotically stable.

Solution: Let $f(P)=2 P(P+3)(P-1)$, then $f(P)>0$ if $P \in(-3,0) \cup(1, \infty)$ and $f(P)<0$ if $P \in(-\infty,-3) \cup(0,1)$. Thus, $P(t)=-3$ and $P(t)=1$ are unstable and $P(t)=0$ asymptotically stable.
3. The Wronskian of $y_{1}(t)=e^{-3 t^{2}-3 t+6}$ and $y_{2}(t)=e^{-3 t^{2}-3 t-3}$ is
A. 0
B. None of these.
C. $e^{-6 t^{2}-6 t+12}(-12 t-6)$
D. $9 e^{-3 t^{2}-3 t+6}$
E. $e^{9}(-12 t-6)$

Solution: Note that $y_{1}(t)=e^{9} y_{2}(t)$. If y_{1} is a scalar multiple of y_{2}, then $W\left[y_{1}, y_{2}\right](t)=$ 0 for all t. Indeed,

$$
W\left[y_{1}, y_{2}\right](t)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{9} y_{2} y_{2}^{\prime}-e^{9} y_{2} y_{2}^{\prime}=0 .
$$

4. If $y(t)=5 e^{-4 t}-4 e^{5 t}$ is a solution to the following equation

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

what are p and q ?

Solution: Since $y(t)$ is a solution, we have

$$
\begin{aligned}
y^{\prime \prime}+p y^{\prime}+q y & =\left(5 e^{-4 t}-4 e^{5 t}\right)^{\prime \prime}+p\left(5 e^{-4 t}-4 e^{5 t}\right)^{\prime}+q\left(5 e^{-4 t}-4 e^{5 t}\right) \\
& =5 e^{-4 t}(16-4 p+q)-4 e^{5 t}(25+5 p+q) \\
& =0
\end{aligned}
$$

for all t. This implies that $16-4 p+q=25+5 p+q=0$. Therefore, $p=-1$ and $q=-20$.
5. Consider

$$
y^{\prime}=\frac{(y-5)(y+5)}{y(y-8)}
$$

Solution: Let $f(y)=\frac{(y-5)(y+5)}{y(y-8)}$, then $f(y)>0$ if $y \in(-\infty,-5) \cup(0,5) \cup(8, \infty)$ and $f(y)<0$ if $y \in(-5,0) \cup(5,8)$. If $y(0)=-1$, then $y(t)$ is decreading so that $\lim _{t \rightarrow \infty} y(t)=-5$. If $y(0)=2$, then $y(t)$ is increasing so that $\lim _{t \rightarrow \infty} y(t)=5$.

