Math 285 Midterm 1 Practice Exam

1. Identify which differential equation below corresponds to the following direction field.

A. $y^{\prime}=y(3-y)$
B. $y^{\prime}=y(y-3)$
C. $y^{\prime}=y(y-2)$
D. $y^{\prime}=y-3$
E. None of these
2. Find the solution of

$$
\frac{d y}{d t}=5-2 y .
$$

A. $y(t)=C e^{-2 t}+\frac{5}{2}$ where C is an arbitrary constant.
B. $y(t)=C e^{-t}+\frac{5}{2}$ where C is an arbitrary constant.
C. $y(t)=e^{-2 t}+C$ where C is an arbitrary constant.

Page 1 of 4
D. $y(t)=e^{-t}+C$ where C is an arbitrary constant.
E. None of these
3. How would you classify the following equation for $y(t)$?

$$
\left(1+t^{2}\right)\left(y^{\prime \prime \prime}\right)^{2}+e^{t} \ln y=\frac{y}{t}
$$

A. A third order nonlinear differential equation.
B. A third order linear differential equation.
C. A sixth order nonlinear differential equation.
D. A sixth order linear differential equation.
E. None of these
4. What is the correct integrating factor to solve the following ODE for $y(t)$?

$$
t^{4} y^{\prime}+3 t^{3} y+1=0
$$

A. $\mu(t)=t^{3}$
B. $\mu(t)=\frac{1}{t^{3}}$
C. $\mu(t)=3 t$
D. $\mu(t)=\frac{3}{t}$
E. None of these
5. Solve the following initial value problem.

$$
y^{\prime}+3 y=e^{-t}, \quad y(1)=0
$$

A. $y(t)=\frac{1}{2}\left(e^{-t}-e^{2-3 t}\right)$
B. $y(t)=-e^{-4 t}+e^{-3 t-1}$
C. $y(t)=\frac{1}{2}\left(e^{2 t}-e^{2}\right)$
D. $y(t)=e^{-t}-e^{-1}$
E. None of these
6. The following nonlinear equation for $y(x)$ can be transformed with a substitution into which separable equation for $v(x)$?

$$
y^{\prime}=\frac{-x^{2}+2 x y+y^{2}}{x^{2}}+\sec \left(\frac{y}{x}\right)
$$

A. $x v^{\prime}=-1+v+v^{2}+\sec v$
B. $v^{\prime}=-1+2 v+v^{2}+\sec v$
C. $x v^{\prime}=-x^{2}+v+v^{2}+\sec v$
D. $v^{\prime}=1-2 v+v^{2}$
E. None of these
7. Determine the values of r for which the given differential equation has solutions of the form $y(t)=e^{r t}$.

$$
y^{\prime \prime}+4 y^{\prime}-5 y=0 .
$$

A. $r=1,-5$
B. $r=-1,5$
C. $r=1,5$
D. $r=3,-5$
E. None of these
8. The existence and uniqueness theorem for linear differential equations ensures that the solution of

$$
(t-2)(t+3) y^{\prime}+\sqrt{t} y=1+t^{2}, \quad y(1)=-1
$$

exists for all t in the region defined by:
A. $(0,2)$
B. $(-3,2)$
C. $(2, \infty)$
D. $(-\infty,-3)$
E. None of these
9. Consider the following nonlinear ODE for $y(x)$. Which initial condition would guarantee a unique solution to the initial value problem?

$$
y y^{\prime}+x^{2} y^{\prime}=\frac{e^{-x}}{x+1}
$$

A. $y(2)=4$
B. $y(2)=-4$
C. $y(-1)=1$
D. $y(-1)=-1$
E. None of these
10. For which values of r and K, is the constant function $y(t)=-2$ an asymptotic stable equilibrium solution to the following equation?

$$
y^{\prime}=r(y+2)(y-K) .
$$

A. $r=1$ and $K=0$
B. $r=2$ and $K=-3$
C. $r=-1$ and $K=-2$
D. $r=-2$ and $K=1$
E. None of these
11. Consider the following differential equation.

$$
y^{\prime}=\frac{x^{4}+3 y}{x}, \quad x>0 .
$$

1. Determine whether the equation is linear. Give a reason why.
2. Solve the equation with the initial condition $y(2)=4$.
3. Find the solution to the following initial value problem.

$$
\left(x^{4}+1\right) y^{\prime}=2 x^{3} y^{2}, \quad y(0)=\frac{3}{2}
$$

and specify the interval where the solution is defined.

