## Math 285 Midterm 1 Practice Exam

1. Identify which differential equation below corresponds to the following direction field.

|  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |

A. $y^{\prime}=y(3-y)$
B. $y^{\prime}=y(y-3)$
C. $y^{\prime}=y(y-2)$
D. $y^{\prime}=y-3$
E. None of these

Solution: The slopes are zero if $y=0,3$. If $y>3$ or $y<0$, then the slope is negative. If $0<y<3$, then the slope is positive. Thus, $y^{\prime}=-y(y-3)$.
2. Find the solution of

$$
\frac{d y}{d t}=5-2 y .
$$

A. $y(t)=C e^{-2 t}+\frac{5}{2}$ where $C$ is an arbitrary constant.
B. $y(t)=C e^{-t}+\frac{5}{2}$ where $C$ is an arbitrary constant.
C. $y(t)=e^{-2 t}+C$ where $C$ is an arbitrary constant.
D. $y(t)=e^{-t}+C$ where $C$ is an arbitrary constant.
E. None of these

Solution: Since it is separable,

$$
\frac{1}{2 y-5} d y=-d t
$$

and so $\frac{1}{2} \ln |2 y-5|=-t+C$. Thus, $y(t)=C e^{-2 t}+\frac{5}{2}$.
3. How would you classify the following equation for $y(t)$ ?

$$
\left(1+t^{2}\right)\left(y^{\prime \prime \prime}\right)^{2}+e^{t} \ln y=\frac{y}{t}
$$

A. A third order nonlinear differential equation.
B. A third order linear differential equation.
C. A sixth order nonlinear differential equation.
D. A sixth order linear differential equation.
E. None of these

Solution: The highest derivative is $y^{\prime \prime \prime}$ and there are nonlinear terms $\left(y^{\prime \prime \prime}\right)^{2}$ and $\ln y$.
4. What is the correct integrating factor to solve the following ODE for $y(t)$ ?

$$
t^{4} y^{\prime}+3 t^{3} y+1=0
$$

A. $\mu(t)=t^{3}$
B. $\mu(t)=\frac{1}{t^{3}}$
C. $\mu(t)=3 t$
D. $\mu(t)=\frac{3}{t}$
E. None of these

Solution: Dividing the equation by $t^{4}$, we get $p(t)=3 / t$ and

$$
\mu(t)=\exp \left(3 \int \frac{1}{t} d t\right)=t^{3}
$$

5. Solve the following initial value problem.

$$
y^{\prime}+3 y=e^{-t}, \quad y(1)=0 .
$$

A. $y(t)=\frac{1}{2}\left(e^{-t}-e^{2-3 t}\right)$
B. $y(t)=-e^{-4 t}+e^{-3 t-1}$
C. $y(t)=\frac{1}{2}\left(e^{2 t}-e^{2}\right)$
D. $y(t)=e^{-t}-e^{-1}$
E. None of these

Solution: Since the integrating factor is $\mu(t)=e^{3 t}$, we have

$$
y(t)=e^{-3 t} \int e^{2 t} d t=e^{-3 t}\left(\frac{1}{2} e^{2 t}+C\right)
$$

Since $y(1)=0$, the solution is

$$
y(t)=\frac{1}{2}\left(e^{-t}-e^{2-3 t}\right) .
$$

6. The following nonlinear equation for $y(x)$ can be transformed with a substitution into which separable equation for $v(x)$ ?

$$
y^{\prime}=\frac{-x^{2}+2 x y+y^{2}}{x^{2}}+\sec \left(\frac{y}{x}\right)
$$

A. $x v^{\prime}=-1+v+v^{2}+\sec v$
B. $v^{\prime}=-1+2 v+v^{2}+\sec v$
C. $x v^{\prime}=-x^{2}+v+v^{2}+\sec v$
D. $v^{\prime}=1-2 v+v^{2}$
E. None of these

Solution: Let $v=y / x$, then $v+x v^{\prime}=y^{\prime}$ and the RHS is $-1+2 v+v^{2}+\sec v$.
7. Determine the values of $r$ for which the given differential equation has solutions of the form $y(t)=e^{r t}$.

$$
y^{\prime \prime}+4 y^{\prime}-5 y=0
$$

A. $r=1,-5$
B. $r=-1,5$
C. $r=1,5$
D. $r=3,-5$
E. None of these

Solution: Plugging $y(t)=e^{r t}$ into the equation, we get $\left(r^{2}+4 r-5\right) e^{r t}=0$. Since $e^{r t} \neq 0$, we have $r=1,-5$.
8. The existence and uniqueness theorem for linear differential equations ensures that the solution of

$$
(t-2)(t+3) y^{\prime}+\sqrt{t} y=1+t^{2}, \quad y(1)=-1
$$

exists for all $t$ in the region defined by:
A. $(0,2)$
B. $(-3,2)$
C. $(2, \infty)$
D. $(-\infty,-3)$
E. None of these

Solution: Dividing the equation by $(t-2)(t+3)$, we have

$$
y^{\prime}+\frac{\sqrt{t}}{(t-2)(t+3)} y=\frac{1+t^{2}}{(t-2)(t+3)} .
$$

The first coefficient is continuous on $(0,2) \cup(2, \infty)$ and the second on $(-\infty,-3) \cup$ $(-3,2) \cup(2, \infty)$. Since the initial condition $1 \in(0,2)$, the interval is $(0,2)$.
9. Consider the following nonlinear ODE for $y(x)$. Which initial condition would guarantee a unique solution to the initial value problem?

$$
y y^{\prime}+x^{2} y^{\prime}=\frac{e^{-x}}{x+1}
$$

A. $y(2)=4$
B. $y(2)=-4$
C. $y(-1)=1$
D. $y(-1)=-1$
E. None of these

Solution: Since $y y^{\prime}+x^{2} y^{\prime}=y^{\prime}\left(y+x^{2}\right)$, we have

$$
y^{\prime}=\frac{e^{-x}}{\left(y+x^{2}\right)(x+1)}=f(x, y) .
$$

Then, $f$ and $\frac{\partial f}{\partial y}$ are continuous if $y \neq-x^{2}$ and $x \neq-1$.
10. For which values of $r$ and $K$, is the constant function $y(t)=-2$ an asymptotic stable equilibrium solution to the following equation?

$$
y^{\prime}=r(y+2)(y-K)
$$

A. $r=1$ and $K=0$
B. $r=2$ and $K=-3$
C. $r=-1$ and $K=-2$
D. $r=-2$ and $K=1$
E. None of these

Solution: In order for $y(t)=-2$ to be asymptotic stable, $f(y)=r(y+2)(y-K)$ is negative if $y$ is close to -2 from right and positive if $y$ is close to -2 from left. Thus, this holds if $r>0$ and $K>-2$ or if $r<0$ and $K<-2$.
11. Consider the following differential equation.

$$
y^{\prime}=\frac{x^{4}+3 y}{x}, \quad x>0 .
$$

1. Determine whether the equation is linear. Give a reason why.
2. Solve the equation with the initial condition $y(2)=4$.

## Solution:

1. It is linear because it can be written as $y^{\prime}-\frac{3}{x} y=x^{3}$.
2. The integrating factor is $\mu(x)=x^{-3}$. Thus,

$$
y(x)=\frac{1}{\mu(t)} \int \mu(x) x^{3} d x=x^{3}(x+C)=x^{4}+C x^{3} .
$$

Since $y(2)=4, C=-\frac{3}{2}$ and so

$$
y(x)=x^{4}-\frac{3}{2} x^{3}
$$

12. Find the solution to the following initial value problem.

$$
\left(x^{4}+1\right) y^{\prime}=2 x^{3} y^{2}, \quad y(0)=\frac{3}{2}
$$

and specify the interval where the solution is defined.

Solution: The equation is separable and

$$
\frac{1}{y^{2}} d y=\frac{2 x^{3}}{x^{4}+1} d x
$$

Taking integration of the both sides, we have

$$
-\frac{1}{y}=\frac{1}{2} \ln \left(x^{4}+1\right)+C .
$$

Using the initial condition, $C=-2 / 3$. Thus,

$$
y(x)=\frac{6}{4-3 \ln \left(x^{4}+1\right)} .
$$

Since the denominator is zero if

$$
x= \pm\left(e^{4 / 3}-1\right)^{\frac{1}{4}},
$$

the solution is defined on the interval

$$
\left(-\left(e^{4 / 3}-1\right)^{\frac{1}{4}},\left(e^{4 / 3}-1\right)^{\frac{1}{4}}\right)
$$

