Practice for Final exam

1. Consider the following initial value problem for $y(x)$:

$$
y^{\prime}=\frac{\sqrt{y-a}}{(x-b)^{2}}, \quad y\left(x_{0}\right)=y_{0}
$$

For which values of x_{0} and y_{0} are we guaranteed one and only one solution?
A. $x_{0}=\beta \neq b$ and $y_{0}=\alpha>a$
B. $x_{0}=b$ and $y_{0}=\alpha>a$
C. $x_{0}=\beta \neq b$ and $y_{0}=a$
D. $x_{0}=b$ and $y_{0}=a$
E. $x_{0}=\beta \neq b$ and $y_{0}=a$
F. None of these
2. Consider the following initial value problem for $y(x)$:

$$
y^{\prime}=\frac{x}{(y-a)(x-b)^{2}}, \quad y\left(x_{0}\right)=y_{0}
$$

For which values of x_{0} and y_{0} are we guaranteed one and only one solution?
A. $x_{0}=\beta \neq b$ and $y_{0}=\alpha \neq a$
B. $x_{0}=b$ and $y_{0}=\alpha \neq a$
C. $x_{0}=\beta \neq b$ and $y_{0}=a$
D. $x_{0}=b$ and $y_{0}=a$
E. $x_{0}=\beta \neq b$ and $y_{0}=a$
F. None of these
3. Select all sets of solutions that are linearly independent on the whole real axis
A. $e^{x}, e^{2 x}, a e^{x}+b e^{2 x}$,
B. $\sin (2 x), \cos (x) \sin (x), x$,
C. $x, x^{2}, a x^{2}+b x$,
D. $x+1, x-1,1$,
E. $e^{x}, e^{2 x}, e^{3 x}$,
F. $\sin (2 x), \cos (2 x), 1$,
G. $x+1, x-1, x^{2}$,
H. $1, a e^{x},+b e^{2 x}$
I. $e^{x}+1, e^{-x}-1, x$
4. Assume that a linear homogeneous ODE for $y(x)$ has one of the following characteristic equation
(i) $r^{3}-4 r^{2}+4 r$
(ii) $r^{3}-2 r^{2}$
(iii) $r^{3}+6 r^{2}+9 r$
(iv) $r^{3}+3 r^{2}$
(v) $r^{4}+r^{3}-6 r^{2}$

In each case pare item (i)-(v) above with a solution below
A. $c_{1}+c_{2} e^{2 x}+c_{3} x e^{2 x}$
B. $c_{1}+c_{2} x+c_{3} e^{2 x}$
C. $c_{1}+c_{2} e^{-3 x}+c_{3} x e^{-3 x}$
D. $c_{1}+c_{2} x+c_{3} e^{-3 x}$
E. $c_{1}+c_{2} x+c_{3} e^{2 x}+c_{4} e^{-3 x}$
F. $c_{1}+c_{2} x+c_{3} x^{2}$
G. $c_{1} e^{2 x}+c_{2} e^{-3 x}$
H. $c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3} e^{-3 x}$
I. $c_{1} e^{2 x}+c_{2} e^{-3 x}+c_{3} x e^{-3 x}$
5. Consider the following initial value problem for $y(x)$:

$$
\left(x^{2}-(a+b) x+a b\right) y^{\prime}+\frac{\gamma x}{x^{2}-2 c x+c^{2}} y=\gamma_{2} \frac{x^{2}+2 c x+c^{2}}{x^{2}}
$$

with $y\left(x_{0}\right)=\gamma_{2}$. Assuming that $a<0<b<c$, determine the interval in which we are guaranteed one and only one solution:

$$
x \in(,)
$$

6. Determine the integrating factor for the following ODE for $y(x)$:

$$
x^{2} y^{\prime}+A x y=B x^{C}, \quad x>0
$$

7. Consider the population model for $P(t)$ described by the ODE:

$$
\frac{d P}{d t}=\gamma\left(P^{2}-(a+b) P+a b\right)\left(P^{2}-2 c P+c^{2}\right)
$$

with $c<0<a<b$. Identify the correct equilibrium solutions and their stability
A. if $\gamma>0 P=c$, semistable; $P=a$, stable; $P=b$, unstable
B. if $\gamma<0 P=c$, semistable; $P=a$, unstable; $P=b$, stable
C. $P=c$, stable; $P=a$, unstable; $P=b$, stable
D. $P=c$, stable; $P=a$, stable; $P=b$, unstable
E. $P=0$, semistable; $P=a$, stable; $P=b$, unstable
F. $P=0$, semistable; $P=a$, unstable; $P=b$, stable
G. $P=c$, stable; $P=0$, unstable; $P=b$, stable
H. $P=c$, stable; $P=0$, stable; $P=b$, unstable
I. $P=c$, stable; $P=a$, unstable; $P=0$, stable
J. $P=c$, unstable; $P=a$, stable; $P=0$, unstable
K. None of these
8. Consider the population model for $P(t)$ described by the ODE:

$$
\frac{d P}{d t}=\left(P^{4}+(b-a) P^{3}-a b P^{2}\right)
$$

with $b>a>0$. Determine the value of the stable equilibrium solution $P=$. Determine the value of the unstable equilibrium solution $P=$.
9. Consider the following oscillator equation for $x(t)$ and the given initial conditions:

$$
x^{\prime \prime}+\omega_{0}^{2} x=F_{0} f(\omega t), x(0)=0 ; x^{\prime}(0)=0
$$

with $\omega \neq \omega_{0}$ and where either $f=\cos$ or $f=\sin$. What is the long term behavior of the solution?
A. The solution will oscillate forever
B. The solution is 0 at all times
C. The solution will oscillates with amplitude growing to infinity
D. The solution will decay to 0
E. The solution will oscillates with amplitude decaying to 0
F. There is no solution
G. The solution will reach a finite asymptote
H. The solution will be lost in a forest
I. None of these
10. Consider the following ODE's for $y(x)$
(i) $y^{\prime \prime}-y^{\prime}-6 y=-4 e^{x}+3 e^{-2 x}$
(ii) $y^{\prime \prime}+3 y^{\prime}-4 y=2 e^{-2 x}-e^{-4 x}$
(iii) $y^{\prime \prime}+y^{\prime}-6 y=e^{2 x}+4 e^{-2 x}$
(iv) $y^{\prime \prime}-2 y^{\prime}-8 y=2 e^{4 x}-4 e^{2 x}$,
(v) $y^{\prime \prime}+2 y^{\prime}-3 y=2 e^{x}+e^{-4 x}$

If you were to use the method of variation of parameters, what would be the correct particular solution to use?
A. $u_{1}(x) e^{3 x}+u_{2}(x) e^{-2 x}$ for item 1
B. $u_{1}(x) e^{x}+u_{2}(x) e^{-4 x}$ for item 2
C. $u_{1}(x) e^{2 x}+u_{2}(x) e^{-3 x}$ for item 3
D. $u_{1}(x) e^{4 x}+u_{2}(x) e^{-2 x}$ for item 4
E. $u_{1}(x) e^{x}+u 2(x) e^{-3 x}$ for item 5
F. $A e^{x}+B e^{-2 x}$
G. $A e^{-2 x}+B e^{-4 x}$
H. $A e^{2 x}+B e^{-2 x}$
I. $A e^{4 x}+B e^{2 x}$
J. $A e^{x}+B e^{-4 x}$
K. $A e^{x}+B x e^{-2 x}$
L. $A e^{-2 x}+B x e^{-4 x}$
M. $A x e^{2 x}+B e^{-2 x}$
N. $A x e^{4 x}+B e^{2 x}$
O. $A x e^{x}+B e^{-4 x}$
11. Consider the following eigenvalue problem for $y(x)$

$$
y^{\prime \prime}+\lambda y=0
$$

with

$$
\begin{align*}
y(0)-y^{\prime}(0) & =0, & & y(L)=0, \tag{A}\\
y(0) & =0, & & y(L)+y^{\prime}(L)=0, \tag{B}\\
y^{\prime}(0) & =0, & & y(L)+y^{\prime}(L)=0 . \tag{C}
\end{align*}
$$

Which are the correct eigenvalues and corresponding eigenfunctions?
A. First choice of boundary conditions $\lambda_{n}=\alpha_{n}^{2}, \quad y_{n}(x)=\alpha_{n} \cos \left(\alpha_{n} x\right)+$ $\sin \left(\alpha_{n} x\right)$ where $\tan \left(L \alpha_{n}\right)=-\alpha_{n}$
B. Second choice of boundary conditions $\lambda_{n}=\alpha_{n}^{2}, \quad y_{n}(x)=\sin \left(\alpha_{n} x\right)$, where $\tan \left(L \alpha_{n}\right)=-\alpha_{n}$
C. Third choice of boundary conditions $\lambda_{n}=\alpha_{n}^{2}, \quad y_{n}(x)=\cos \left(\alpha_{n} x\right)$, where, $\tan \left(L \alpha_{n}\right)=1 / \alpha_{n}$
D. $\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} ; \quad y_{n}(x)=\cos \left(\frac{n \pi x}{L}\right)$
E. $\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} ; \quad y_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$
F. $\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{L} ; \quad y_{n}(x)=\cos \left(\frac{(2 n-1) \pi x}{L}\right)$
G. $\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{L} ; \quad y_{n}(x)=\sin \left(\frac{(2 n-1) \pi x}{L}\right)$
H. None of these
12. Calculate the coefficients of the Cosine Fourier Series expansion of $f(x)=a x$ for $0<$ $x<L$.
13. Using separation of variables solve the following diffusion equation problem for $u(x, t)$ where $0<x<L$ and $t>0$

$$
\begin{cases}u_{t}=\kappa u_{x x} & \text { for } 0<x<L, \quad t>0, \\ u(0, t)=0, u(L, t)=0, & \text { for } t \geq 0, \\ u(x, 0)=a x & \end{cases}
$$

Assume that the solution has the form

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} T_{n}(t) X_{n}(x)
$$

Calculate $c_{n}, T_{n}(t)$, and $X_{n}(x)$.
14. Consider the Laplace equation problem in the rectangle $0<x<a$ and $0<y<b$:

$$
\begin{aligned}
u_{x x}+u_{y y} & =0, & & \\
u(0, y) & =b c_{1}, & & u(a, y)=b c_{2}, \\
u(x, 0) & =b c_{3}, & & u(x, b)=b c_{4} .
\end{aligned}
$$

Where $b c_{i}$ means that the i-th condition is a function $f(x)$ and everything else is 0 . If you were to solve this problem by separation of variables by writing $u(x, y)=X(x) Y(y)$, what would be the solutions for X_{n} and Y_{n} ?
A. Correct in case $b c_{1} X_{n}=-\tanh \left(\frac{a n \pi}{b}\right) \cosh \left(\frac{n \pi x}{b}\right)+\sinh \left(\frac{n \pi x}{b}\right) ; \quad Y_{n}=$ $\sin \left(\frac{n \pi y}{b}\right)$;
B. Correct in case $b c_{2} X_{n}=\sinh \left(\frac{n \pi x}{b}\right) ; \quad Y_{n}=\sin \left(\frac{n \pi y}{b}\right)$
C. Correct in case $b c_{3} X_{n}=\sin \left(\frac{n \pi x}{a}\right) ; \quad Y_{n}=-\tanh \left(\frac{b n \pi}{a}\right) \cosh \left(\frac{n \pi y}{a}\right)+$ $\sinh \left(\frac{n \pi y}{a}\right)$
D. Correct in case $b c_{4} X_{n}=\sin \left(\frac{n \pi x}{a}\right) ; \quad Y_{n}=\sinh \left(\frac{n \pi y}{a}\right)$
E. None of these
F. $X_{n}=\tan \left(\frac{b n \pi}{a}\right) \cos \left(\frac{n \pi x}{a}\right) ; \quad Y_{n}=\sin \left(\frac{n \pi y}{b}\right)$
G. $X_{n}=\sin \left(\frac{n \pi x}{a}\right) ; \quad Y_{n}=\cos \left(\frac{n \pi y}{b}\right)$
H. $X_{n}=\tan \left(\frac{b n \pi}{a}\right) \cos \left(\frac{n \pi x}{a}\right) ; \quad Y_{n}=\cos \left(\frac{n \pi y}{b}\right)$
I. $X_{n}=\sin \left(\frac{n \pi x}{a}\right) ; \quad Y_{n}=\sin \left(\frac{n \pi y}{b}\right)$
J. There is no solution

