Solutions to Practice for Final exam

1. Consider the following initial value problem for y(x):

$$y' = \frac{\sqrt{y-a}}{(x-b)^2}, \qquad y(x_0) = y_0.$$

For which values of x_0 and y_0 are we guaranteed one and only one solution?

A. $x_0 = \beta \neq b$ and $y_0 = \alpha > a$ B. $x_0 = b$ and $y_0 = \alpha > a$

- C. $x_0 = \beta \neq b$ and $y_0 = a$
- D. $x_0 = b$ and $y_0 = a$
- E. $x_0 = \beta \neq b$ and $y_0 = a$
- F. None of these

Solution: The equation is of the form

$$y' = f(x, y)$$

with $f(x,y) = \frac{\sqrt{y-a}}{(x-b)^2}$. The initial value $x_0 = \beta \neq b$ and $y_0 = \alpha > a$ is the only one for which $f(x,y) = \frac{\sqrt{y-a}}{(x-b)^2}$ and $\frac{\partial f}{\partial y} = \frac{1}{(x-b)^2\sqrt{y-a}}$ are continuous.

2. Consider the following initial value problem for y(x):

$$y' = \frac{x}{(y-a)(x-b)^2}, \qquad y(x_0) = y_0$$

For which values of x_0 and y_0 are we guaranteed one and only one solution?

A. $x_0 = \beta \neq b$ and $y_0 = \alpha \neq a$ B. $x_0 = b$ and $y_0 = \alpha \neq a$ C. $x_0 = \beta \neq b$ and $y_0 = a$ D. $x_0 = b$ and $y_0 = a$ E. $x_0 = \beta \neq b$ and $y_0 = a$

F. None of these

Solution: The equation is of the form

$$y' = f(x, y)$$

with $f(x,y) = \frac{x}{(y-a)(x-b)^2}$. The initial value $x_0 = \beta \neq b$ and $y_0 = \alpha \neq a$ is the only one for which $f(x,y) = \frac{x}{(y-a)(x-b)^2}$ and $\frac{\partial f}{\partial y} = -\frac{x}{(y-a)^2(x-b)^2}$ are continuous.

3. Select all sets of solutions that are linearly independent on the whole real axis

A. e^{x} , e^{2x} , $ae^{x} + be^{2x}$, B. $\sin(2x)$, $\cos(x)\sin(x)$, x, C. x, x^{2} , $ax^{2} + bx$, D. x + 1, x - 1, 1, E. e^{x} , e^{2x} , e^{3x} , F. $\sin(2x)$, $\cos(2x)$, 1, G. x + 1, x - 1, x^{2} , H. 1, ae^{x} , $+be^{2x}$ I. $e^{x} + 1$, $e^{-x} - 1$, x

- 4. Assume that a linear homogeneous ODE for y(x) has one of the following characteristic equation
 - (i) $r^{3} 4r^{2} + 4r$ (ii) $r^{3} - 2r^{2}$ (iii) $r^{3} + 6r^{2} + 9r$ (iv) $r^{3} + 3r^{2}$ (v) $r^{4} + r^{3} - 6r^{2}$

In each case pare item (i)-(v) above with a solution below

A. $c_1 + c_2 e^{2x} + c_3 x e^{2x}$ B. $c_1 + c_2 x + c_3 e^{2x}$ C. $c_1 + c_2 e^{-3x} + c_3 x e^{-3x}$ D. $c_1 + c_2 x + c_3 e^{-3x}$ E. $c_1 + c_2 x + c_3 e^{2x} + c_4 e^{-3x}$ F. $c_1 + c_2 x + c_3 x^2$ G. $c_1 e^{2x} + c_2 e^{-3x}$ H. $c_1 e^{2x} + c_2 x e^{2x} + c_3 e^{-3x}$ I. $c_1 e^{2x} + c_2 e^{-3x} + c_3 x e^{-3x}$

Solution:

5. Consider the following initial value problem for y(x):

$$(x^{2} - (a + b)x + ab)y' + \frac{\gamma x}{x^{2} - 2cx + c^{2}}y = \gamma_{2}\frac{x^{2} + 2cx + c^{2}}{x^{2}}$$

with $y(x_0) = \gamma_2$. Assuming that a < 0 < b < c, determine the interval in which we are guaranteed one and only one solution:

$$x \in \left(\ , \ \right).$$

Solution: Dividing by $(x^2 - (a+b)x + ab) = (x-a)(x-b)$ and using $x^2 - 2cx + c^2 = (x-c)^2$ $y' + \frac{\gamma x}{(x-a)(x-b)(x-c)^2}y = \gamma_2 \frac{x^2 + 2cx + c^2}{(x-a)(x-b)x^2}$. For the uniqueness and existence theorem we need $\frac{\gamma x}{(x-a)(x-b)(x-c)^2}$ and $\frac{x^2 + 2cx + c^2}{(x-a)(x-b)x^2}$ to be continuous so the interval must be (i) $(-\infty, a)$ if $x_0 < a$ (ii) (a, 0) if $x_0 \in (a, 0)$ (iii) (0, b) if $x_0 \in (0, b)$ (iv) (b, c) if $x_0 \in (b, c)$ (v) $(c, +\infty)$ if $x_0 > a$

6. Determine the integrating factor for the following ODE for y(x):

$$x^2 y' + A x y = B x^C, \qquad x > 0$$

Solution: After dividing by x^2 the equation becomes

$$y' + \frac{A}{x}y = Bx^{C-2}.$$

The integrating factor is then

$$\rho = \exp\left(\int \frac{A}{x}dx\right) = e^{A\ln x} = x^A.$$

7. Consider the population model for P(t) described by the ODE:

$$\frac{dP}{dt} = \gamma (P^2 - (a+b)P + ab)(P^2 - 2cP + c^2)$$

with c < 0 < a < b. Identify the correct equilibrium solutions and their stability

- A. if $\gamma > 0$ P = c, semistable; P = a, stable; P = b, unstable
- B. if $\gamma < 0$ P = c, semistable; P = a, unstable; P = b, stable
- C. P = c, stable; P = a, unstable; P = b, stable
- D. P = c, stable; P = a, stable; P = b, unstable
- E. P = 0, semistable; P = a, stable; P = b, unstable
- F. P = 0, semistable; P = a, unstable; P = b, stable
- G. P = c, stable; P = 0, unstable; P = b, stable
- H. P = c, stable; P = 0, stable; P = b, unstable
- I. P = c, stable; P = a, unstable; P = 0, stable
- J. P = c, unstable; P = a, stable; P = 0, unstable
- K. None of these

Solution: The equation is of the form

$$\frac{dP}{dt} = f(P)$$

with $f(P) = \gamma (P^2 - (a+b)P + ab)(P^2 - 2cP + c^2) = \gamma (P-a)(P-b)(P-c)^2$ whose roots are P = c, 0, a, b. If $\gamma > 0$, then $f(P) = \gamma (P-a)(P-b)(P-c)^2$ is positive on $(-\infty, a) \cup (b, +\infty)$ and negative in (a, b) and therefore solutions P(t) are increasing before a and after b and decreasing in between (a, b) whence P = a, stable; P = b, unstable. Since c < 0 < a then f(P) is positive near P = c and therefore P = c, is semistable; When $\gamma < 0$ the above analysis is flipped.

8. Consider the population model for P(t) described by the ODE:

$$\frac{dP}{dt} = (P^4 + (b-a)P^3 - abP^2)$$

with b > a > 0. Determine the value of the stable equilibrium solution P =. Determine the value of the unstable equilibrium solution P =.

Solution: The equation is of the form

$$\frac{dP}{dt} = f(P)$$

with $f(P) = \gamma(P^4 + (b - a)P^3 - abP^2) = \gamma P^2(P - a)(P + b)$. When $\gamma > 0$, $f(P) = \gamma P^2(P - a)(P + b)$ is positive on $(-\infty, -b) \cup (a, +\infty)$ and negative in (-b, a). So if $\gamma > 0$, P = -b is stabel and P = a is unstable. When $\gamma < 0$ the above analysis is flipped.

9. Consider the following oscillator equation for x(t) and the given initial conditions:

 $x'' + \omega_0^2 x = F_0 f(\omega t), \ x(0) = 0; \ x'(0) = 0$

with $\omega \neq \omega_0$ and where either $f = \cos \operatorname{or} f = \sin$. What is the long term behavior of the solution?

A. The solution will oscillate forever

- B. The solution is 0 at all times
- C. The solution will oscillates with amplitude growing to infinity
- D. The solution will decay to 0
- E. The solution will oscillates with amplitude decaying to 0
- F. There is no solution
- G. The solution will reach a finite asymptote
- H. The solution will be lost in a forest
- I. None of these

Solution: Since $\omega \neq \omega_0$ the general solution is $x(t) = R \cos(\omega_0 t - \delta) + F_0 f(\omega t)$ and since $f(\omega t)$ is either $\cos(\omega t)$ or $\sin(\omega t)$, the claim follows.

- 10. Consider the following ODE's for y(x)
 - (i) $y'' y' 6y = -4e^x + 3e^{-2x}$ (ii) $y'' + 3y' - 4y = 2e^{-2x} - e^{-4x}$
 - (iii) $y'' + y' 6y = e^{2x} + 4e^{-2x}$
 - (iv) $y'' 2y' 8y = 2e^{4x} 4e^{2x}$,
 - (v) $y'' + 2y' 3y = 2e^x + e^{-4x}$

If you were to use the method of variation of parameters, what would be the correct particular solution to use?

A. $u_1(x) e^{3x} + u_2(x) e^{-2x}$ for item 1 B. $u_1(x) e^x + u_2(x) e^{-4x}$ for item 2 C. $u_1(x) e^{2x} + u_2(x) e^{-3x}$ for item 3 D. $u_1(x) e^{4x} + u_2(x) e^{-2x}$ for item 4 E. $u_1(x) e^x + u2(x) e^{-3x}$ for item 5 F. $A e^x + B e^{-2x}$ G. $A e^{-2x} + B e^{-4x}$ H. $A e^{2x} + B e^{-2x}$ I. $A e^{4x} + B e^{2x}$ J. $A e^x + B e^{-4x}$ K. $A e^x + B x e^{-2x}$ L. $A e^{-2x} + B x e^{-4x}$ M. $A x e^{2x} + B e^{-2x}$ N. $A x e^{4x} + B e^{2x}$ O. $A x e^x + B e^{-4x}$

Solution: Using the method of variation of parameters $y_p = u_1y_1 + u_2y_2$ where y_1 and y_2 are solutions to the homogeneous equation. The characteristic polynomials of the equations given are

(i)
$$r^2 - r - 6 = (r - 3)(r + 2)$$

(ii) $r^2 + 3r - 4 = (r + 4)(r - 1)$
(iii) $r^2 + r - 6 = (r - 3)(r + 2)$
(iv) $r^2 - 2r - 8 = (r - 4)(r + 2)$
(v) $r^2 + 2r - 3 = (r + 2)(r - 1)$

11. Consider the following eigenvalue problem for y(x)

$$y'' + \lambda y = 0$$

with

$$y(0) - y'(0) = 0, \qquad y(L) = 0,$$
 (A)

$$y(0) = 0,$$
 $y(L) + y'(L) = 0,$ (B)

$$y'(0) = 0,$$
 $y(L) + y'(L) = 0.$ (C)

Which are the correct eigenvalues and corresponding eigenfunctions?

- A. First choice of boundary conditions $\lambda_n = \alpha_n^2$, $y_n(x) = \alpha_n \cos(\alpha_n x) + \sin(\alpha_n x)$ where $\tan(L \alpha_n) = -\alpha_n$
- B. Second choice of boundary conditions $\lambda_n = \alpha_n^2$, $y_n(x) = \sin(\alpha_n x)$, where $\tan(L \alpha_n) = -\alpha_n$
- C. Third choice of boundary conditions $\lambda_n = \alpha_n^2$, $y_n(x) = \cos(\alpha_n x)$, where $\tan(L \alpha_n) = 1/\alpha_n$

D.
$$\lambda_n = \frac{n^2 \pi^2}{L^2}; \qquad y_n(x) = \cos\left(\frac{n\pi x}{L}\right)$$

E. $\lambda_n = \frac{n^2 \pi^2}{L^2}; \qquad y_n(x) = \sin\left(\frac{n\pi x}{L}\right)$

F.
$$\lambda_n = \frac{(2n-1)^2 \pi^2}{L};$$
 $y_n(x) = \cos\left(\frac{(2n-1)\pi x}{L}\right)$
G. $\lambda_n = \frac{(2n-1)^2 \pi^2}{L};$ $y_n(x) = \sin\left(\frac{(2n-1)\pi x}{L}\right)$
H. None of these

12. Calculate the coefficients of the Cosine Fourier Series expansion of f(x) = a x for 0 < x < L.

Solution:

$$a_{0} = \frac{2}{L} \int_{0}^{L} a x dx = aL$$

$$a_{n} = \frac{2}{L} \int_{0}^{L} a x \cos\left(\frac{n\pi x}{L}\right) dx = 2aL \frac{(\cos(n\pi) - 1)}{((n\pi)^{2})}$$

13. Using separation of variables solve the following diffusion equation problem for u(x,t)where 0 < x < L and t > 0

$$\begin{cases} u_t = \kappa \, u_{xx} & \text{for } 0 < x < L, \quad t > 0, \\ u(0,t) = 0, \quad u(L,t) = 0, & \text{for } t \ge 0, \\ u(x,0) = a \, x. \end{cases}$$

Assume that the solution has the form

$$u(x,t) = \sum_{n=1}^{\infty} c_n T_n(t) X_n(x).$$

Calculate c_n , $T_n(t)$, and $X_n(x)$.

Solution:

$$X_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

$$T_n(t) = e^{-\frac{n^2 \pi^2 \kappa t}{L}},$$

$$c_n = \frac{2}{L} \int_0^L a x \sin\left(\frac{n\pi x}{L}\right) dx$$

$$= -2aL \frac{\cos(n\pi)}{(n\pi)} = (-1)^{n+1} \frac{aL}{n\pi}.$$

14. Consider the Laplace equation problem in the rectangle 0 < x < a and 0 < y < b:

$$u_{xx} + u_{yy} = 0,$$

$$u(0, y) = bc_1, \qquad u(a, y) = bc_2,$$

$$u(x, 0) = bc_3, \qquad u(x, b) = bc_4.$$

Where bc_i means that the *i*-th condition is a function f(x) and everything else is 0. If you were to solve this problem by separation of variables by writing u(x, y) = X(x)Y(y), what would be the solutions for X_n and Y_n ?

- A. Correct in case $bc_1 X_n = -\tanh\left(\frac{an\pi}{b}\right)\cosh\left(\frac{n\pi x}{b}\right) + \sinh\left(\frac{n\pi x}{b}\right); \quad Y_n = \sin\left(\frac{n\pi y}{b}\right);$
- **B.** Correct in case $bc_2 X_n = \sinh\left(\frac{n\pi x}{b}\right); \qquad Y_n = \sin\left(\frac{n\pi y}{b}\right)$
- C. Correct in case $bc_3 X_n = \sin\left(\frac{n\pi x}{a}\right);$ $Y_n = -\tanh\left(\frac{bn\pi}{a}\right)\cosh\left(\frac{n\pi y}{a}\right) + \sinh\left(\frac{n\pi y}{a}\right)$
- **D.** Correct in case $bc_4 X_n = \sin\left(\frac{n\pi x}{a}\right); \qquad Y_n = \sinh\left(\frac{n\pi y}{a}\right)$
- E. None of these
- F. $X_n = \tan\left(\frac{bn\pi}{a}\right)\cos\left(\frac{n\pi x}{a}\right); \qquad Y_n = \sin\left(\frac{n\pi y}{b}\right)$
- G. $X_n = \sin\left(\frac{n\pi x}{a}\right);$ $Y_n = \cos\left(\frac{n\pi y}{b}\right)$
- H. $X_n = \tan\left(\frac{bn\pi}{a}\right)\cos\left(\frac{n\pi x}{a}\right);$ $Y_n = \cos\left(\frac{n\pi y}{b}\right)$
- I. $X_n = \sin\left(\frac{n\pi x}{a}\right);$ $Y_n = \sin\left(\frac{n\pi y}{b}\right)$
- J. There is no solution