Math 3215: Intro to Probability and Statistics

Exam 2, Summer 2023

Date: July 6, 2023

NAME: \qquad ID: \qquad

READ THE FOLLOWING INFORMATION.

- This is a $75-$ minute.
- This exam contains 10 pages (including this cover page) and 7 questions. Total of points is 100 .
- Books, notes, and other aids are not allowed.
- Show all steps to earn full credit.
- Do not unstaple pages. Loose pages will be ignored.

Name	PMF	Mean	Variance
$\operatorname{Ber}(p)$	$\mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p$	p	$p(1-p)$
$\operatorname{Bin}(n, p)$	$\binom{n}{x} p^{x}(1-p)^{n-x}$ for $x=0,1, \ldots, n$	$n p$	$n p(1-p)$
$\operatorname{Geom}(p)$	$p(1-p)^{x-1}$ for $x=1,2, \ldots$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
$\operatorname{NegBin}(r, p)$	$\binom{x-1}{r-1} p^{r} q^{x-r}$ for $x=r, r+1, \ldots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$
$\operatorname{Poisson}(\lambda)$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$ for $x=0,1, \ldots$	λ	λ
$\operatorname{Uniform}(a, b)$	$\frac{1}{b-a}$ for $x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ for $x \in(-\infty, \infty)$	μ	σ^{2}
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}$ for $x>0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$
$\operatorname{Gamma}(a, \lambda)$	$\frac{\lambda^{a} x^{a-1} e^{-\lambda x}}{\Gamma(a)}$ for $x>0$	$\frac{a}{\lambda}$	$\frac{a}{\lambda^{2}}$

1. Let X and Y be two discrete random variables with joint pmf

$$
f_{X, Y}(1,1)=f_{X, Y}(2,1)=\frac{1}{8}, \quad f_{X, Y}(1,2)=\frac{1}{4}, \quad f_{X, Y}(2,2)=\frac{1}{2} .
$$

(a) (5 points) Find $\mathbb{E}[X Y]$.
(b) (5 points) Find the conditional expectation of X given $Y=1$.
(c) (5 points) Find the conditional expectation $\mathbb{E}[X \mid Y]$.
2. Let X and Y be continuous random variables with joint probabilitydensity function

$$
f(x, y)=\frac{x}{5}+c y
$$

for $0<x<1$ and $1<y<5$, and otherwise 0 .
(a) (5 points) Find the constant c.
(b) (5 points) Find the marginal pdfs of X and Y.
(c) (5 points) Are they independent?
3. Let X be a random variable with cdf given by

$$
F_{X}(x)=1-e^{-e^{x}}
$$

for $-\infty<x<\infty$. Let $Y=e^{X}$.
(a) (7 points) Find the pdf of X.
(b) (8 points) Find the cdf and pdf of Y.
4. Let X be a uniform random variable on $(-1,1)$ and $Y=|X|$.
(a) (5 points) Find the pdf of Y.
(b) (5 points) Compute $\operatorname{Cov}(X, Y)$.
(c) (5 points) Compute $\mathbb{P}\left(X \leq \frac{1}{2}\right), \mathbb{P}\left(Y \leq \frac{1}{2}\right)$, and $\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$.
5. Let (X, Y) have a bivariate normal distribution with common mean 24 , common standard deviation $2 \sqrt{3}$, and correlation coefficient 0.5. That is, $\mu_{X}=\mu_{Y}=24, \sigma_{X}=\sigma_{Y}=2 \sqrt{3}$, and $\rho=0.5$.
(a) (7 points) Find the expectation of the variance of $X+Y$.
(b) (8 points) Using the tables, find the conditional probability $\mathbb{P}(X \geq 24.75 \mid Y=12)$.
6. Let X be a normal random variable with mean 5 and variance 4 , that is, $X \sim N(5,4)$
(a) (5 points) Find $\mathbb{E}\left[(3 X-2)^{2}\right]$.
(b) (5 points) Using the tables, find $\mathbb{P}(X \leq 3.5)$.
7. Let X, Y be independent exponential random variables with parameters $\lambda_{X}=1$ and $\lambda_{Y}=2$, that is, their marginal pdfs are $f_{X}(t)=e^{-t}$ and $f_{Y}(t)=2 e^{-2 t}$ for $t \geq 0$.
(a) (7 points) Let $Z=\max \{X, Y\}$. Find $\mathbb{P}(Z \leq 6)$.
(b) (8 points) Let $W=\min \{X, Y\}$. Find the cdf and the pdf of W.

Table Va The Standard Normal Distribution Function

This page intentionally left blank.

