Normal and Exponential Random Variables (Sec 5.4-7)

University of Illinois at Urbana-Champaign
Math 461 Spring 2022

Instructor: Daesung Kim

Normal random variables
X is a normal random variable with parameters μ and σ^{2} if its density is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

for $x \in \mathbb{R}$ and denoted by $X \sim N\left(\mu, \sigma^{2}\right)$.
If $\mu=0$ and $\sigma=1$, then we call X the standard normal random variable.

$$
x \sim N\left(\mu, \sigma^{2}\right) \Rightarrow\left\{\begin{array}{l}
x=\sigma z+\mu, \quad z \sim N(0,1) \\
z=\frac{x-\mu}{\sigma} \sim N(0,1)
\end{array}\right.
$$

For general $\mathcal{F} \sim N\left(\mu, \sigma^{2}\right)$
Probability density function

Cumulative distribution function
The cumulative distribution function of $N(0,1)$ is

$$
\mathbb{P}(z \leqslant x)=\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{p^{2}}{2}} d t .
$$

$$
Z \sim N(0,1)
$$

$$
f_{z}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}}
$$

Note that the oof cannot be computed explicitly. Note also that

$$
\Phi(x)=1-\Phi(-x) .
$$

$$
\Phi(-x)=1-\Phi(x) \text { or } E(x)=1-\Phi(-x)
$$

Cumulative distribution function

$\Phi(-x)=1-を(x)$
Cumulative distribution function
$X \sim N(3,9)$

$$
\mu=3
$$

$$
\sigma^{2}=9 \Rightarrow \sigma=3
$$

$$
\begin{aligned}
& \text { If } n \text { barge } p \text { small } n p=\lambda \Rightarrow S_{n} \sim P_{\text {is }}(\lambda) \\
& \text { Normal approximations to binomial } ?
\end{aligned}
$$

Let $S_{n} \sim \operatorname{Bin}(n, p)$ be the number of successes in n independent Bernoulli trials.

Then, we have seen that $\mathbb{E}\left[S_{n}\right]=n p, \operatorname{Var}\left(S_{n}\right)=n p(1-p)$.
For large n,

$$
\frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}=\frac{S_{n}-n p}{\sqrt{n p(1-p)}} \approx N(0,1) .
$$

$$
\begin{aligned}
& \text { large } n, x \text { almost } \\
& S_{n}{ }^{n} \text { is annal } \\
& x \sim N(n \rho, n p(1-p))
\end{aligned}
$$

The approximation is good for $n p(1-p) \geqslant 10$.

$$
x=\sigma z+\mu
$$

Compared to Poisson approximation, the success probability p needs not to be small.

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
& =\frac{x-n p}{\sqrt{n p(1-p)}}
\end{aligned}
$$

Normal approximations to binomial

Example
Each item produced by a certain manufacturer is, independently, of acceptable quality with probability .95. Approximate the probability that at most 10 of the next 1500items produced are unacceptable.

Normal approximation.
$X=$ \# of unacceptable items in 1500 items.

$$
\begin{aligned}
& \sim \operatorname{Bin}(150,0.05) \quad \mathbb{E}[x]=n_{p}=1500 \cdot 0.05=\frac{15}{2}=7.5 \\
& \operatorname{Var}(x)=n p(1-p)=1500 \cdot 0.05 \cdots .95 . \\
& \left.\frac{X-\mathbb{E}[x]}{\sqrt{\operatorname{Var}(x)}}=\frac{x-7.5_{4}}{\sqrt{7.5 \cdot 0.45}} \approx Z \sim N(0.1) \quad \underset{\|}{\left(\frac{2 \hbar}{\sqrt{V a n}}\right.}\right) \text {. } \\
& \mathbb{P}(x \leqslant 10)=P\left(\frac{x-7.5}{\sqrt{\cdots}} \leqslant \frac{10-7.5}{\sqrt{\cdots}}\right) \approx \mathbb{P}(z \leqslant \sqrt[2.5]{\sqrt{\text { var }}})
\end{aligned}
$$

Example
Each item produced by a certain manufacturer is, independently, of acceptable quality with probability .95 . Approximate the probability that at most 10 of the next 150 items produced are unacceptable.
Poisson

$$
n=150, p=0.05 \Rightarrow \lambda=n_{\rho}=7.5
$$

$$
\text { (X) approx } \underset{\text { ais }(7.5)}{\sim} \operatorname{Por}
$$

> Exponential random variable (Continuous Counterpart A random variable X is exponential with parameter $\lambda>0$ if its density is given by

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & x \geqslant 0, \\ 0, & x<0\end{cases}
$$

We denote by $X \sim \operatorname{Exp}(\lambda)$.

" "Lifetime".

- "Strong Relation to Poisson":

Expectation, Variance, CDF
Let $X \sim \operatorname{Exp}(\lambda)$ for $\lambda>0$.
(i) The cumulative distribution function $F(x)=1-e^{-\lambda x}$.
(ii) $\mathbb{E}[X]=\frac{1}{\lambda}$.
(iii) $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$.
(i)

$$
\begin{aligned}
F(x) & =\mathbb{P}(x \leqslant x)=\int_{-\infty}^{x} f(t) d t=\int_{0}^{x} \lambda e^{-\lambda t} d t \\
& =\left[-e^{-\lambda t}\right]_{0}^{x}=1-e^{-\lambda x} \\
E[x] & =\int_{-\infty}^{\infty} x \cdot f(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x \\
& =\frac{1}{\lambda} \cdot \int_{0}^{\infty} t=\lambda x \\
=1+e^{-t} d t & =\frac{1}{\lambda} .
\end{aligned}
$$

(ii)

Memoryless property

Let $s, t>0$ and $X \sim \operatorname{Exp}(\lambda)$ for $\lambda>0$, then

$$
\mathbb{P}(X>s+t \mid X>t)=\mathbb{P}(X>s) .
$$

Example

Suppose that the number of miles that a car can run before its battery wears out is exponentially distributed with an average value of 10,000 miles.

If a person desires to take a 5000 -mile trip, what is the probability that the person will be able to complete the trip without having to replace the car battery?

$$
\begin{aligned}
& Y \sim \operatorname{Geom}\left(\frac{\lambda}{n}\right) \\
& P(Y \leqslant t) \xrightarrow{n \rightarrow \infty} 11-e^{-\lambda t}= P(X \leqslant t) \\
& X \sim \operatorname{Exp}(\lambda) .
\end{aligned}
$$

