In-Class Midterm 1 Review, Math 1554

1. Consider the matrix A and vectors \vec{b}_{1} and \vec{b}_{2}.

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right), \quad \vec{b}_{1}=\binom{-2}{-4}, \quad \vec{b}_{2}=\binom{-1}{2}
$$

If possible, on the grids below, draw
(i) the two vectors and the span of the columns of $A,=\left\{a \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]+b \cdot\left[\begin{array}{l}4 \\ 8\end{array}\right]: a, b \in \mathbb{R}\right\}$
(ii) the solution set of $A \vec{x}=\vec{b}_{1}$.
(iii) the solution set of $A \vec{x}=\vec{b}_{2}$.

iii) solution set $A x=\vec{b}_{2}$

2. Indicate true if the statement is true, otherwise, indicate false. For the statements that are false, give a counterexample.
true false counterexample
a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, them the columns of A cannot span \mathbb{R}^{M}.
b) If there are some vectors $\vec{b} \in \mathbb{R}^{M}$ that are not in the range of $T(\vec{x})=A \vec{x}$, then there cannot be a pivot in every row of A.
c) If the transform $\vec{x} \rightarrow A \vec{x}$ projects points in \mathbb{R}^{2} onto a line that passes through the origin, then the transform cannot be one-to-one.

$$
x_{2} \cdot\left[\begin{array}{c}
-4 \\
1
\end{array}\right]+\left[\begin{array}{c}
-2 \\
6
\end{array}\right]
$$

3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write not possible.
(a) A linear system that is homogeneous and has no solutions.
(b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one.
(c) A 3×7 matrix A, in RREF, with exactly 2 pivot columns, such that $A \vec{x}=\vec{b}$ has exactly 5 free variables.
4. Consider the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 7 & 0 & -5 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \vec{b}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

$1-7.2$

(b) Write the set of solutions to $A \vec{x}=\vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 x_{5}-13 \\
-3 x_{5}-2 \\
2 \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 x_{5} \\
-3 x_{5} \\
0 \\
0 \\
1 x_{5}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
x_{4} \\
0
\end{array}\right]+\left[\begin{array}{c}
-13 \\
-2 \\
2 \\
0 \\
0
\end{array}\right]
$$

$$
=x_{5}\left[\begin{array}{c}
5 \\
-3 \\
0 \\
0 \\
1
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-13 \\
-2 \\
2 \\
0 \\
0
\end{array}\right] .
$$

3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write not possible.
(a) A linear system that is homogeneous and has no solutions.

Note If \vec{u}, \vec{v} are solutions to $A \vec{x}=\vec{b}$
flem

$$
\left.\begin{array}{lll}
\vec{u}-\vec{v} & \text { is } & \text { a solution } \\
\overrightarrow{A v}=\vec{b} & A \vec{v}=\vec{b} & A(\vec{u}-\vec{v})=A \vec{u}-A \vec{v}=\vec{b}-\vec{b}=\overrightarrow{0}
\end{array}\right)
$$

(b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one.
If \vec{u} is a solution to $\vec{A} \vec{x} \vec{b}$

$$
\overrightarrow{\underline{u}}=\frac{(\vec{u}-\vec{v})}{h_{0} \text { genes us solution }}+\vec{v} \text { specific solution. }
$$

(c) A 3×7 matrix A, in RREF, with exactly 2 pivot columns, such that $A \vec{x}=\vec{b}$ has exactly 5 free variables.
4. Consider the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 7 & 0 & -5 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \vec{b}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

(a) Express the augmented matrix $(A \mid \vec{b})$ in RREF.
(b) Write the set of solutions to $A \vec{x}=\vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

Math 1554 Linear Algebra Fall 2022
 Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler
Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false. true false

If A has a pivot in every column then the system $A \vec{x}=\vec{b}$ has a unique solution.
$\bigcirc \quad$ Suppose A is a 6×4 matrix with 4 pivots, then there is \vec{b} such that $A \vec{x}=\vec{b}$ has no solution.
$\bigcirc \bigcirc$ The sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $\left\{\vec{v}_{1}+\vec{v}_{2},-\vec{v}_{1}-\vec{v}_{2}\right\}$ have the same span.
$\bigcirc \quad$ If A and B are square $n \times n$ matrices, then $A^{2}-B^{2}=(A-B)(A+B)$.
\bigcirc The matrix equation $A \vec{x}=\overrightarrow{0}$ is always consistent.

Suppose $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ are nonzero vectors in \mathbb{R}^{n} and the sets $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, $\left\{\vec{v}_{1}, \vec{v}_{3}\right\}$, and $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ are all linearly independent. Then, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent.
\bigcirc If $A \vec{v}=0, A \vec{u}=0$ and $\vec{w}=3 \vec{v}-2 \vec{u}$, then $A \vec{w}=0$.
$\bigcirc \quad$ Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $T(\vec{x})=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{m}$. Then T is one-to-one.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible
A 7×5 matrix A with linearly independent columns.
A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that is not onto and its
standard matrix has linearly independent columns.

$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that is onto and its standard matrix has exactly
one non-pivotal column.

Two non-zero matrices A, B of size 2×2 with $A B=\left(\begin{array}{ll}0 & 0 \\
0 & 0\end{array}\right)$.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
(c) (2 points) Let

$$
\left(\begin{array}{ccc|c}
1 & 3 & 0 & 1 \\
0 & 3 h & 3 & 6 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

be an augmented matrix of a system of linear equations. For which values of h does the system have a free variable? Choose the best option.
0 only
O $\frac{1}{3}$ only
1 only
for all values of h
\bigcirc for no values of h
(d) (2 points) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ maps each of the standard unit vectors \vec{e}_{1}, \vec{e}_{2} and \vec{e}_{3} to 1 . Which of the following statements is TRUE? Select only one.
$\bigcirc T$ is one-to-one.
T is not onto.
The solution set of $T(\vec{x})=\overrightarrow{0}$ spans a plane in \mathbb{R}^{3}.
\bigcirc The range of T is $\{1\}$.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (4 points) Suppose $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 2\end{array}\right)$ and sketch (a) a non-zero vector \vec{b} such that $A \vec{x}=\vec{b}$ is consistent, and (b) the set of solutions to $A \vec{x}=\overrightarrow{0}$.
(a) a vector $\vec{b} \neq \overrightarrow{0}$
(b) set of solutions

3. (2 points) Consider the linear system in variables x_{1}, x_{2}, x_{3} with unknown constants below.

$$
\begin{aligned}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} & =b_{1} \\
c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} & =b_{2}
\end{aligned}
$$

Which of the following statements about the solution set of this system are possible? Select all that apply.The solution set is empty.
\bigcirc The solution set is a single point.
The solution set is a line.
\bigcirc The solution set is a plane.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
4. Fill in the blanks.
(a) (3 points) Let A be a coefficient matrix of size 2×2 and B be a coefficient matrix of size 3×2. Construct an example of two augmented matrices $[A \mid \vec{b}]$ and $[B \mid \vec{d}]$ which are both in RREF and such that the systems $A \vec{x}=\vec{b}$ and $B \vec{x}=\vec{d}$ each have the exact same unique solution $x_{1}=3$ and $x_{2}=6$. If this is not possible write NP in each box.

$$
[A \mid \vec{b}]=\square
$$

(b) (2 points) Let $\vec{u}_{1}=\binom{1}{-1}, \vec{u}_{2}=\binom{0}{1}$, and $\vec{b}=\binom{1}{2}$. Find c_{1}, c_{2} such that $\vec{b}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}$.

$$
c_{1}=\square \quad c_{2}=\square
$$

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (8 points) Let T be a linear transformation that maps \vec{v}_{1} to $T\left(\vec{v}_{1}\right)$ and \vec{v}_{2} to $T\left(\vec{v}_{2}\right)$, where

$$
\vec{v}_{1}=\binom{2}{-1}, \quad \vec{v}_{2}=\binom{-1}{1}, \quad T\left(\vec{v}_{1}\right)=\left(\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right), \quad T\left(\vec{v}_{2}\right)=\left(\begin{array}{c}
3 \\
-1 \\
-2 \\
1
\end{array}\right)
$$

(i) What is domain and codomain of T ?
domain is
codomain is
\square
(ii) Is it true that $\mathbb{R}^{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$?
\bigcirc yes
no
(iii) Write $\vec{e}_{1}=\binom{1}{0}$ and $\vec{e}_{2}=\binom{0}{1}$ as linear combinations of \vec{v}_{1} and \vec{v}_{2}.

(iv) What is the standard matrix of T ?

(v) Is T one-to-one?

Oyes
○ no

Midterm 1. Your initials:
6. Show all work for problems on this page.
(a) (3 points) For what value of k will matrix A have exactly two pivots?

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 2 \\
0 & 1 & k
\end{array}\right) \\
k=
\end{gathered}
$$

(b) (4 points) Find b and c such that $A B=B A$.

$$
\begin{array}{ll}
A=\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right) & B=\left(\begin{array}{ll}
1 & b \\
c & 0
\end{array}\right) \\
b=\square & c=\square
\end{array}
$$

Midterm 1. Your initials:
7. (4 points) Show your work for problems on this page.

Write down the parametric vector form for solutions to the homogeneous equation $A \vec{x}=\overrightarrow{0}$.

$$
A=\left[\begin{array}{ccccc}
1 & -1 & -2 & -3 & -1 \\
0 & 1 & 0 & 3 & 1 \\
-1 & 1 & 2 & 3 & 2
\end{array}\right]
$$

8. (4 points) Determine whether the set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent. Justify your answer in the space below.

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
8
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
-2 \\
2 \\
-9
\end{array}\right]
$$linearly independent

\bigcirc linearly dependent

Math 1554 Linear Algebra Spring 2022
 Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad
@gatech.edu

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Barone Prof Shirani Prof Simone Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false. true false
\bigcirc The span of two non-zero vectors in \mathbb{R}^{3} is necessarily a plane.
\bigcirc If an echelon form of A has a row of zeros, then the system $A \vec{x}=\vec{b}$ has a free variable.
$\bigcirc \quad$ If $A \vec{v}=\vec{b}$, and $[A \mid \vec{b}]$ is row equivalent to $[C \mid \vec{d}]$, then $C \vec{v}=\vec{d}$.
$\bigcirc \quad$ If the columns of A span \mathbb{R}^{m}, then $A \vec{x}=\vec{b}$ is consistent for any $\vec{b} \in \mathbb{R}^{m}$.
$\bigcirc \bigcirc$ If $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution, then the columns of A are linearly dependent.
$\bigcirc \quad$ If \vec{v} and \vec{u} are solutions of a homogeneous system of linear equations, then $\vec{v}+\vec{u}$ is also a solution of that system.
\bigcirc If the columns of a matrix A are linearly dependent, then the system $A \vec{x}=\vec{b}$ can not have a unique solution.
$\bigcirc \quad$ If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation such that $T(\vec{x})=\vec{b}$ has no solution for some $\vec{b} \in \mathbb{R}^{n}$, then T is not one-to-one.
(b) (4 points) Indicate whether the following situations are possible or impossible.

Midterm 1. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(c) (2 points) Let

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & h^{2} & 0
\end{array}\right]
$$

be a row echelon form of an augmented matrix of a system of linear equations. For which values of h is the system consistent? Choose the best option.
\bigcirc for all values of h
0 only
for no values of h
1 and -1 only
(d) (2 points) Let

$$
\left[\begin{array}{ccccc|c}
1 & -1 & 0 & \pi & 2 & -1 \\
0 & 0 & 1 & -2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

be a row echelon form of an augmented matrix of a system of equations. How many solutions does the system have? Choose the best option.
\bigcirc
$\bigcirc 1$
infinitely many
(e) (2 points) Suppose $A \vec{x}=\vec{b}$ is a system of three linear equations in three variables. If the system $A \vec{x}=\vec{b}$ is consistent, which of the following could be the graphs in \mathbb{R}^{3} of the three equations represented by the rows of $[A \mid b]$? Circle all pictures that apply.

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
2. (4 points) Suppose $A=\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$ and sketch a) a non-zero solution to $A \vec{x}=\overrightarrow{0}$, and b) the span of the columns of A.

3. (5 points) Let $A \in \mathbb{R}^{3 \times 5}, B \in \mathbb{R}^{4 \times 3}$ and $\vec{a} \in \mathbb{R}^{3}, \vec{b} \in \mathbb{R}^{4}, \vec{c} \in \mathbb{R}^{5}$. Which of the following are defined? Choose all the expressions which are defined.$B \vec{b}$
$\bigcirc \vec{c}$
$\bigcirc A(B \vec{a})$
$\bigcirc B(A \vec{c})$
$B(\vec{a}+\vec{b})$
4. (3 points) In each of the following cases, indicate whether $A \vec{x}=\vec{b}$ has no solutions, a unique solution, infinitely many solutions, or if this can not be determined with the given information.

no	unique	infinitely	can't be
solution	solution	many deter-	delutions mined

\bigcirc
\square $A \in \mathbb{R}^{3 \times 4}, \vec{b}=\overrightarrow{0}$, and A has 2 pivots

$A \in \mathbb{R}^{5 \times 2}, \vec{b}=\overrightarrow{0}$, and A has 2 pivots

\square
$A \in \mathbb{R}^{3 \times 5}$ and A has 3 pivots

Midterm 1. Your initials:
You do not need to justify your reasoning for questions on this page.
5. Fill in the blanks.
(a) (2 points) If the augmented matrix $[A \mid \vec{b}]$ of a system of equations is 3×6 and the system has two pivot (basic) variables, then how many free variables does it have?

(b) (2 points) For what value(s) of h is the following set of vectors linearly dependent?

$$
\begin{gathered}
\left\{\left(\begin{array}{l}
1 \\
1 \\
h
\end{array}\right),\left(\begin{array}{l}
1 \\
h \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
h
\end{array}\right)\right\} \\
h=\square
\end{gathered}
$$

Midterm 1. Your initials: \qquad
6. Show all work for problems on this page.

$$
\begin{aligned}
& \text { (a) (1 point) Let } \vec{b}=\left[\begin{array}{c}
3 \\
-4 \\
-6 \\
1
\end{array}\right], \overrightarrow{a_{1}}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], \overrightarrow{a_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \text {, and } \overrightarrow{a_{3}}=\left[\begin{array}{c}
3 \\
-3 \\
-5 \\
2
\end{array}\right] \text {. I } \vec{b} \text { in the span of } \\
& \overrightarrow{a_{1}}, \overrightarrow{a_{2}} \text {, and } \overrightarrow{a_{3}} \text { ? } \\
& \bigcirc \text { Yes } \\
& \text { ○ } \mathrm{No} \\
& x_{1} \overrightarrow{a_{1}}+x_{2} \cdot \overrightarrow{b_{2}}+x_{3} \cdot \overrightarrow{a_{3}}=\overrightarrow{0} \\
& \text { if loti trivial solution } \\
& \text { then infincteply mary) }\left\{a_{1}, a_{2}, a_{2}\right\} \\
& \text { free. } \\
& \text { non picot } \\
& \text { lin. dep. } \\
& {\left[\begin{array}{lll}
\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}
\end{array}\right] \vec{x}=\vec{b}} \\
& {\left[\begin{array}{lll}
\overrightarrow{a_{1}} & \vec{a}_{2} & \overrightarrow{a r}_{3} \\
\vec{b}^{2}
\end{array}\right]} \\
& \mathcal{L} \\
& \text { [pREF } \\
& \square
\end{aligned}
$$

(b) (2 points) If you answered yes to part (a), write \vec{b} as a linear combination of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$. If you answered no, give an echelon form of the augmented matrix $\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} \mid \vec{b}\end{array}\right]$.
\square

Midterm 1. Your initials: \qquad
6. Show all work for problems on this page.
(a) (1 point) Let $\vec{b}=\left[\begin{array}{c}3 \\ -4 \\ -6 \\ 1\end{array}\right], \overrightarrow{a_{1}}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right], \overrightarrow{a_{2}}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$, and $\overrightarrow{a_{3}}=\left[\begin{array}{c}3 \\ -3 \\ -5 \\ 2\end{array}\right]$. Is \vec{b} in the span of $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}$, and $\overrightarrow{a_{3}}$?
\bigcirc Yes
\bigcirc No

$$
\left[\begin{array}{lll}
\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}
\end{array} \vec{b}\right] \quad \vec{x}=\overrightarrow{0}
$$

(b) (2 points) If you answered yes to part (a), write \vec{b} as a linear combination of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$. If you answered no, give an echelon form of the augmented matrix $\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} \mid \vec{b}\end{array}\right]$.

Midterm 1. Your initials:
7. (3 points) Show your work for problems on this page.

Suppose that we have

$$
[A \mid \vec{b}] \sim\left[\begin{array}{cccc|c}
1 & 4 & 0 & -1 & 3 \\
0 & 0 & 1 & 5 & 2
\end{array}\right]
$$

Find the parametric vector form for the solutions of $A \vec{x}=\vec{b}$.

8. (2 points) Suppose $A \vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $A \vec{u}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$. Compute $A(2 \vec{v}-\vec{u})$.

\qquad
9. (8 points) Show all work for problems on this page. Consider the linear transformation defined by $T(\underbrace{x_{1}, x_{2}})=(\underbrace{x_{1}+x_{2}, x_{1}, x_{1}-x_{2}})$ with domain \mathbb{R}^{2}.
(i) What is the codomain of T ?

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

(ii) What is the standard matrix of T ?

(iii) Is T onto?

O yes
no
Every now picot.

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

(iv) Write an equation using the variables b_{1}, b_{2}, and b_{3} which is satisfied exactly when $T\left(x_{1}, x_{2}\right)=\left(b_{1}, b_{2}, b_{3}\right)$ has a solution for x_{1}, x_{2}.

Midterm 1. Your initials: \qquad
9. (8 points) Show all work for problems on this page. Consider the linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}, x_{1}-x_{2}\right)$ with domain \mathbb{R}^{2}.
(i) What is the codomain of T ? \square
(ii) What is the standard matrix of T ? \square
(iii) Is T onto?
\bigcirc yes
○ no
(iv) Write an equation using the variables b_{1}, b_{2}, and b_{3} which is satisfied exactly when $T\left(x_{1}, x_{2}\right)=\left(b_{1}, b_{2}, b_{3}\right)$ has a solution for x_{1}, x_{2}.

$$
=\left\{x_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]: \quad x_{1}, x_{2} \in \mathbb{R}\right\}=\frac{\operatorname{Span}}{\left.\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right)}
$$

