In-Class Midterm 1 Review, Math 1554

1. Consider the matrix A and vectors \vec{b}_1 and \vec{b}_2 .

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 8 \end{pmatrix}, \quad \vec{b}_1 = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \quad \vec{b}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \qquad 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

If possible, on the grids below, draw
(i) the two vectors and the span of the columns of A , $= \begin{cases} c \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + b \cdot \begin{pmatrix} 4 \\ 8 \end{pmatrix} : c \cdot c \cdot b \in \mathbb{R} \end{cases}$
(ii) the solution set of $A\vec{x} = \vec{b}_1$.
(iii) the solution set of $A\vec{x} = \vec{b}_2$.
(i) \vec{b}_1, \vec{b}_2 , column span (ii) solution set $Ax = \vec{b}_1$
(ii) \vec{b}_1, \vec{b}_2 , column span (iii) solution set $Ax = \vec{b}_1$
(ii) \vec{b}_1, \vec{b}_2 , column span (iii) solution set $Ax = \vec{b}_1$
(ii) \vec{b}_1, \vec{b}_2 , column span (iii) solution set $Ax = \vec{b}_1$
(ii) $\vec{b}_1, \vec{b}_2, \vec{b}_1 = \vec{b}_1$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_1$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_1$
(iii) $\vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_2, \vec{b}_2 = \vec{b}_2$
(iii) $\vec{b}_2, \vec{b}_2 = \vec{b}_2$
(i) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(i) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(i) $\vec{b}_1, \vec{b}_2, \vec{b}_2 = \vec{b}_2$
(i) $\vec{b}_1, \vec{b}_2 = \vec{b}_2$
(i) $\vec{b}_1, \vec{b}_2 = \vec{b}_2$
(i) $\vec{b}_1, \vec{b}_2 = \vec{b}_1$
(i) $\vec{b}_1, \vec{b}_2 = \vec{b}_1$
(i) $\vec{b}_1, \vec{b}_2 = \vec{b}_2$
(i) $\vec{b}_1, \vec{b}_2 = \vec{b}_1$
(i) $\vec{b}_2 = \vec{b}_1$
(i)

2. Indicate **true** if the statement is true, otherwise, indicate **false**. For the statements that are false, give a counterexample.

	true	false	counterexample
a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, then the columns of A cannot span \mathbb{R}^M .	0	0	
b) If there are some vectors $\vec{b} \in \mathbb{R}^M$ that are not in the range of $T(\vec{x}) = A\vec{x}$, then there cannot be a pivot in every row of A .	\bigcirc	0	
c) If the transform $\vec{x} \to A\vec{x}$ projects points in \mathbb{R}^2 onto a line that passes through the origin, then the transform cannot be one-to-one.	0	0	
$X_{2} \cdot \begin{bmatrix} -4\\ i \end{bmatrix} + \begin{bmatrix} -2\\ i \end{bmatrix}$			

- 3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*.
 - (a) A linear system that is homogeneous and has no solutions.
 - (b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and $T_A : \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one.
 - (c) A 3×7 matrix A, in RREF, with exactly 2 pivot columns, such that $A\vec{x} = \vec{b}$ has exactly 5 free variables.

4. Consider the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 1 & 0 & 7 & 0 & -5 \\ 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

- (a) Express the augmented matrix $(A | \vec{b})$ in RREF. (a) $Express the augmented matrix <math>(A | \vec{b})$ in RREF. (c) $(A | \vec{b}) = 0$ (c) $(A | \vec{b}) =$
 - (b) Write the set of solutions to $A\vec{x} = \vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

- 3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*.
 - (a) A linear system that is homogeneous and has no solutions.
- (a) A linear system that is homogeneous and has no solutions. If \vec{U}, \vec{T} are solutions to $A\vec{X} = \vec{b}$ Hun $\vec{U} \vec{T}$ is a solution to $A\vec{X} = \vec{c}$ ($A\vec{U} = \vec{T}$ $A\vec{T} = \vec{F}$ $A(\vec{U} \vec{T}) = A\vec{U} A\vec{T} = \vec{b} \vec{l} = \vec{c}$) (b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and $T_A : \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one. If $\vec{U} = (\vec{U} \vec{T}) + \vec{T}$ specific solution. (c) A 3×7 matrix A, in RREF, with exactly 2 pivot columns, such that $A\vec{x} = \vec{b}$ has exactly 5 free variables.
 - 5 free variables.

4. Consider the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 1 & 0 & 7 & 0 & -5 \\ 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

(a) Express the augmented matrix $(A | \vec{b})$ in RREF.

(b) Write the set of solutions to $A\vec{x} = \vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

Math 1554 Linear Algebra Fall 2022 Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:	G	TID Number:	
Student GT Email Addres	s:		@gatech.edu
Section Number (e.g. A3, G2, e	tc.)	TA Name	
	Circle your in	nstructor:	
Prof Vilaca Da Rocha	Prof Kafer	Prof Barone	Prof Wheeler

Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- **Organize your work** in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose *A* is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select **true** if the statement is true for all choices of *A* and \vec{b} . Otherwise, select **false**.

true	false	
\bigcirc	\bigcirc	If A has a pivot in every column then the system $A\vec{x} = \vec{b}$ has a unique solution.
\bigcirc	\bigcirc	Suppose <i>A</i> is a 6×4 matrix with 4 pivots, then there is \vec{b} such that $A\vec{x} = \vec{b}$ has no solution.
\bigcirc	\bigcirc	The sets $\{\vec{v}_1, \vec{v}_2\}$ and $\{\vec{v}_1 + \vec{v}_2, -\vec{v}_1 - \vec{v}_2\}$ have the same span.
\bigcirc	\bigcirc	If <i>A</i> and <i>B</i> are square $n \times n$ matrices, then $A^2 - B^2 = (A - B)(A + B)$.
\bigcirc	\bigcirc	The matrix equation $A\vec{x} = \vec{0}$ is always consistent.
0	\bigcirc	Suppose $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ are nonzero vectors in \mathbb{R}^n and the sets $\{\vec{v}_1, \vec{v}_2\}$, $\{\vec{v}_1, \vec{v}_3\}$, and $\{\vec{v}_2, \vec{v}_3\}$ are all linearly independent. Then, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent.
\bigcirc	\bigcirc	If $A\vec{v} = 0$, $A\vec{u} = 0$ and $\vec{w} = 3\vec{v} - 2\vec{u}$, then $A\vec{w} = 0$.
\bigcirc	\bigcirc	Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $T(\vec{x}) = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^m$. Then <i>T</i> is one-to-one.

(b) (4 points) Indicate whether the following situations are possible or impossible.

possible	impossible	
0	\bigcirc	A 7×5 matrix A with linearly independent columns.
\bigcirc	0	A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ that is not onto and its standard matrix has linearly independent columns.
\bigcirc	0	$T: \mathbb{R}^3 \to \mathbb{R}^2$ that is onto and its standard matrix has exactly one non-pivotal column.
0	0	Two non-zero matrices A, B of size 2×2 with $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

You do not need to justify your reasoning for questions on this page.

(c) (2 points) Let

1	1	3	0	$ 1\rangle$
	0	3h	3	6
	0	0	1	2

be an augmented matrix of a system of linear equations. For which values of *h* does the system have a free variable? *Choose the best option*.

 \bigcirc 0 only

 $\bigcirc \frac{1}{3}$ only

 \bigcirc 1 only

 $\bigcirc\,$ for all values of h

 $\bigcirc\,$ for no values of h

- (d) (2 points) A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^1$ maps each of the standard unit vectors $\vec{e_1}, \vec{e_2}$ and $\vec{e_3}$ to 1. Which of the following statements is TRUE? *Select only one.*
 - \bigcirc *T* is one-to-one.
 - \bigcirc *T* is not onto.
 - \bigcirc The solution set of $T(\vec{x}) = \vec{0}$ spans a plane in \mathbb{R}^3 .
 - \bigcirc The range of *T* is {1}.

You do not need to justify your reasoning for questions on this page.

2. (4 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$ and sketch (a) a non-zero vector \vec{b} such that $A\vec{x} = \vec{b}$ is consistent, and (b) the set of solutions to $A\vec{x} = \vec{0}$.

3. (2 points) Consider the linear system in variables x_1, x_2, x_3 with unknown constants below.

$$a_1x_1 + a_2x_2 + a_3x_3 = b_1$$

$$c_1x_1 + c_2x_2 + c_3x_3 = b_2$$

Which of the following statements about the solution set of this system are possible? *Select all that apply.*

- \bigcirc The solution set is empty.
- \bigcirc The solution set is a single point.
- \bigcirc The solution set is a line.
- \bigcirc The solution set is a plane.

You do not need to justify your reasoning for questions on this page.

- 4. Fill in the blanks.
 - (a) (3 points) Let *A* be a coefficient matrix of size 2×2 and *B* be a coefficient matrix of size 3×2 . Construct an example of two augmented matrices $\left[A|\vec{b}\right]$ and $\left[B|\vec{d}\right]$ which are both in RREF and such that the systems $A\vec{x} = \vec{b}$ and $B\vec{x} = \vec{d}$ each have the exact same unique solution $x_1 = 3$ and $x_2 = 6$. If this is not possible write NP in each box.

$$\begin{bmatrix} A | \vec{b} \end{bmatrix} = \begin{bmatrix} B | \vec{d} \end{bmatrix} =$$

(b) (2 points) Let
$$\vec{u}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $\vec{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\vec{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Find c_1, c_2 such that $\vec{b} = c_1 \vec{u}_1 + c_2 \vec{u}_2$.
 $c_1 = \boxed{c_2 = \boxed{c_2 = c_2}}$

dterm 1. Your initials: _____ You do not need to justify your reasoning for questions on this page.

5. (8 points) Let *T* be a linear transformation that maps \vec{v}_1 to $T(\vec{v}_1)$ and \vec{v}_2 to $T(\vec{v}_2)$, where

$$\vec{v}_1 = \begin{pmatrix} 2\\ -1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} -1\\ 1 \end{pmatrix}, \quad T(\vec{v}_1) = \begin{pmatrix} 1\\ 3\\ 0\\ 1 \end{pmatrix}, \quad T(\vec{v}_2) = \begin{pmatrix} 3\\ -1\\ -2\\ 1 \end{pmatrix}.$$

(i) What is domain and codomain of *T*?

domain is	
codomain is	

(ii) Is it true that $\mathbb{R}^2 = \operatorname{span}\{\vec{v}_1, \vec{v}_2\}$? \bigcirc yes \bigcirc no (iii) Write $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ as linear combinations of \vec{v}_1 and \vec{v}_2 .

(iv) What is the standard matrix of T?

 \bigcirc yes

 \bigcirc no

Midterm 1. Your initials: _____

6. Show all work for problems on this page.

(a) (3 points) For what value of *k* will matrix *A* have exactly two pivots?

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & k \end{pmatrix}$$
$$k = \boxed{$$

(b) (4 points) Find b and c such that AB = BA.

$$A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & b \\ c & 0 \end{pmatrix}$$
$$b = \boxed{\qquad} \qquad c = \boxed{\qquad}$$

Midterm 1. Your initials: _____

7. (4 points) Show your work for problems on this page.

Write down the parametric vector form for solutions to the homogeneous equation $A\vec{x} = \vec{0}$.

$$A = \begin{bmatrix} 1 & -1 & -2 & -3 & -1 \\ 0 & 1 & 0 & 3 & 1 \\ -1 & 1 & 2 & 3 & 2 \end{bmatrix}$$

8. (4 points) Determine whether the set of vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent. *Justify your answer in the space below.*

$$\vec{v}_1 = \begin{bmatrix} 1\\-1\\5 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2\\-1\\8 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} -2\\2\\-9 \end{bmatrix}$$

 \bigcirc linearly independent \bigcirc linearly dependent

Math 1554 Linear Algebra Spring 2022

Midterm 1

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name:		GTID Number:		
Studen	t GT Email Ad	dress:		@gatech.edu
Section Number (e.g. A3, G2, etc.)			TA Name	
Circle you			ır instructor:	
	Prof Barone	Prof Shirani	Prof Simone	Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- **Organize your work** in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

dterm 1. Your initials: _____ You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^m$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b} . Otherwise, select false.

tr	ue false					
С		The span of two non-zero vectors in \mathbb{R}^3 is necessarily a plane.				
С		If an echelon form of A has a row of zeros, then the system $A\vec{x} = \vec{b}$ has a free variable.				
С		If $A\vec{v} = \vec{b}$, and $[A \mid \vec{b}]$ is row equivalent to $[C \mid \vec{d}]$, then $C\vec{v} = \vec{d}$.				
С		If the columns of A span \mathbb{R}^m , then $A\vec{x} = \vec{b}$ is consistent for any $\vec{b} \in \mathbb{R}^m$.				
С		If $A\vec{x} = \vec{0}$ has a non-trivial solution, then the columns of A are linearly dependent.				
С		If \vec{v} and \vec{u} are solutions of a homogeneous system of linear equations, then $\vec{v} + \vec{u}$ is also a solution of that system.				
С		If the columns of a matrix A are linearly dependent, then the system $A\vec{x} = \vec{b}$ can not have a unique solution.				
С		If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation such that $T(\vec{x}) = \vec{b}$ has no solution for some $\vec{b} \in \mathbb{R}^n$, then <i>T</i> is not one-to-one.				
(b) (4 points) Indicate whether the following situations are possible or impossible.						
possi	ble im	possible				

	\bigotimes	\bigcirc	A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ that is not onto. 3
	\bigcirc	X	A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ that is onto and its
			standard matrix has two non-pivotal columns. I Need 2 pivots
	\bigotimes	\bigcirc	A linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^2$ that is <u>onto</u> and its 1 not pivot
	·		standard matrix has linearly dependent columns.
	R	\bigcirc	Three non-zero matrices A, B, C of size 2×2 with $AC = BC$
	~ (1 º 1 7	$= \begin{pmatrix} 0 \\ l \end{pmatrix} \qquad (= \begin{pmatrix} l \\ l \end{pmatrix} \end{pmatrix} \qquad (= \begin{pmatrix} l \\ l \end{pmatrix} \end{pmatrix}$
[=	A = (o ()	
	Λ.(-	($V = B \cdot C \qquad \qquad$
	R C -		
		A A A A A A A A A A A A A A A A A A A	

You do not need to justify your reasoning for questions on this page.

(c) (2 points) Let

Γ	1	0	0	0]
	0	1	2	1
	0	0	h^2	0

be a row echelon form of an augmented matrix of a system of linear equations. For which values of *h* is the system consistent? *Choose the best option*.

 $\bigcirc\,$ for all values of h

 $\bigcirc 0$ only

 $\bigcirc\,$ for no values of h

- \bigcirc 1 and -1 only
- (d) (2 points) Let

1	-1	0	π	2	-1]
0	0	1	-2	1	1
0	0	0	0	0	1

be a row echelon form of an augmented matrix of a system of equations. How many solutions does the system have? *Choose the best option*.

- $\bigcirc 0$
- $\bigcirc 1$
- \bigcirc infinitely many
- (e) (2 points) Suppose $A\vec{x} = \vec{b}$ is a system of three linear equations in three variables. If the system $A\vec{x} = \vec{b}$ is consistent, which of the following could be the graphs in \mathbb{R}^3 of the three equations represented by the rows of $[A \mid b]$? *Circle all pictures that apply.*

You do not need to justify your reasoning for questions on this page.

2. (4 points) Suppose $A = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$ and sketch a) a non-zero solution to $A\vec{x} = \vec{0}$, and b) the span of the columns of A.

- 3. (5 points) Let $A \in \mathbb{R}^{3 \times 5}$, $B \in \mathbb{R}^{4 \times 3}$ and $\vec{a} \in \mathbb{R}^3$, $\vec{b} \in \mathbb{R}^4$, $\vec{c} \in \mathbb{R}^5$. Which of the following are defined? *Choose all the expressions which are defined.*
 - $\bigcirc B\vec{b}$
 - $\bigcirc A\vec{c}$
 - $\bigcirc A(B\vec{a})$
 - $\bigcirc B(A\vec{c})$
 - $\bigcirc B(\vec{a} + \vec{b})$
- 4. (3 points) In each of the following cases, indicate whether $A\vec{x} = \vec{b}$ has no solutions, a unique solution, infinitely many solutions, or if this can not be determined with the given information.

no solution	unique solution	infinitely many solutions	can't be deter- mined	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	$A \in \mathbb{R}^{3 \times 4}$, $\vec{b} = \vec{0}$, and A has 2 pivots
0	0	0	\bigcirc	$A \in \mathbb{R}^{5 \times 2}$, $\vec{b} = \vec{0}$, and A has 2 pivots
\bigcirc	\bigcirc	\bigcirc	\bigcirc	$A \in \mathbb{R}^{3 \times 5}$ and A has 3 pivots
\bigcirc	\bigcirc	\bigcirc	\bigcirc	

You do not need to justify your reasoning for questions on this page.

- 5. Fill in the blanks.
 - (a) (2 points) If the augmented matrix $[A \mid \vec{b}]$ of a system of equations is 3×6 and the system has two pivot (basic) variables, then how many free variables does it have?

(b) (2 points) For what value(s) of *h* is the following set of vectors linearly dependent?

$$\left\{ \left(\begin{array}{c} 1\\1\\h \end{array}\right), \left(\begin{array}{c} 1\\h\\1 \end{array}\right), \left(\begin{array}{c} -1\\0\\h \end{array}\right) \right\}$$
$$h = \boxed{$$

6. Show all work for problems on this page.

(a) (1 point) Let
$$\vec{b} = \begin{bmatrix} 3 \\ -4 \\ -6 \\ 1 \end{bmatrix}$$
, $\vec{a_1} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{a_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\vec{a_3} = \begin{bmatrix} 3 \\ -3 \\ -5 \\ 2 \end{bmatrix}$. Is \vec{b} in the span of
 $\vec{a_1}, \vec{a_2}, \text{ and } \vec{a_3}$?
 \bigcirc Yes
 \bigcirc No
 $x_1 \vec{a_1} + x_2 \cdot \vec{a_2} + x_3 \cdot \vec{a_3} = \vec{o}$
 \vec{c} from trivial solution
 $(\vec{n} finited y many)$
the fa_1, a_2, a_3
free. $1i_n \cdot dep$.
Non prot

(b) (2 points) If you answered yes to part (a), write \vec{b} as a linear combination of $\vec{a}_1, \vec{a}_2, \vec{a}_3$. If you answered no, give an echelon form of the augmented matrix $[\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ | \ \vec{b}]$.

6. Show all work for problems on this page.

(a) (1 point) Let
$$\vec{b} = \begin{bmatrix} 3 \\ -4 \\ -6 \\ 1 \end{bmatrix}$$
, $\vec{a_1} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{a_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\vec{a_3} = \begin{bmatrix} 3 \\ -3 \\ -5 \\ 2 \end{bmatrix}$. Is \vec{b} in the span of $\vec{a_1}, \vec{a_2}$, and $\vec{a_3}$?
 \bigcirc Yes
 \bigcirc No
 $\begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \\ \hline{a_4} & \vec{a_2} & \vec{a_3} \end{bmatrix}$

(b) (2 points) If you answered yes to part (a), write \vec{b} as a linear combination of $\vec{a}_1, \vec{a}_2, \vec{a}_3$. If you answered no, give an echelon form of the augmented matrix $[\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ | \ \vec{b}]$.

7. (3 points) Show your work for problems on this page.

Suppose that we have

$$\left[\begin{array}{c|c} A & \vec{b} \end{array}\right] \sim \left[\begin{array}{ccc|c} 1 & 4 & 0 & -1 & 3 \\ 0 & 0 & 1 & 5 & 2 \end{array}\right]$$

Find the parametric vector form for the solutions of $A\vec{x} = \vec{b}$.

9. (8 points) Show all work for problems on this page. Consider the linear transformation defined by $T(x_1, x_2) = (x_1 + x_2, x_1, x_1 - x_2)$ with domain \mathbb{R}^2 .

 $(b_3-b_1)+2\cdot(b_1-b_2) = 0$

9. (8 points) Show all work for problems on this page. Consider the linear transformation defined by $T(x_1, x_2) = (x_1 + x_2, x_1, x_1 - x_2)$ with domain \mathbb{R}^2 .

(iv) Write an equation using the variables b_1 , b_2 , and b_3 which is satisfied exactly when $T(x_1, x_2) = (b_1, b_2, b_3)$ has a solution for x_1, x_2 .

