Math 461: Probability Theory

Midterm 2, Spring 2022

Date: April 13, 2022

Solution

NAME:
NetID:

READ THE FOLLOWING INFORMATION.

- This is a 50 -minute.
- This exam contains 8 pages (including this cover page) and 6 questions. Total of points is 60 .
- Books, notes, and other aids are not allowed. Using calculator is okay.
- Show all steps to earn full credit.
- Do not unstaple pages. Loose pages will be ignored.

Question	Points	Score
1	10	
2	12	
3	10	
4	10	
5	8	
6	10	
Total:	60	

1. (10 points) Circle True or False. Do not justify your answer.
(a) True False If X has normal distribution with mean 7 and variance 10, then $Z=\frac{1}{10}(X-7)$

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right), \mu=7, \quad \sigma=\sqrt{10} \\
& Z=\frac{x-\mu}{\sigma}=\frac{x-7}{\sqrt{10}} \sim N(0,1)
\end{aligned}
$$

(b) True False If F is a CDF of a random variable of X, then $(F(x))^{2}$ is also a CDF of some other $\begin{aligned} & \text { random variable. }\end{aligned}$ random variable.

If X, Y are independent $R V$ with the same $F(x)$, then the $C D F$ of $\max \{x, Y\}$ is $F(x)^{2}$.
(c) True False The joint probability mass function of X and Y is given by

$$
p(1,1)=p(2,1)=\frac{1}{8}, \quad p(1,2)=\frac{1}{4}, \quad p(2,2)=\frac{1}{2} .
$$

Then, $\mathbb{E}[X Y]=\frac{23}{8}$.

$$
\begin{aligned}
\mathbb{E}[X Y]= & 1 \cdot 1 \cdot p(1,1)+2 \cdot 1 \cdot p(2,1)+1 \cdot 2 \cdot p(1,2) \\
& +2 \cdot 2 \cdot p(2,2) \\
= & \frac{1}{8}(1+2+4+16)=\frac{23}{8}
\end{aligned}
$$

(d) True False

$$
f(x, y)= \begin{cases}1, & 0<x<1,0<y<2 x \\ 0, & \text { otherwise }\end{cases}
$$

then X and Y are independent.

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{2 x} 1 d x=2 x \\
& f_{Y}(y)=\int_{y / 2}^{1} 1 d x=1-\frac{y}{2} \\
& f \neq f_{X} \cdot f_{Y}
\end{aligned}
$$

(e) True False

If X, Y are independent uniform random variables over $(0,1)$, then $X+Y$ is also a uniform random variable.

$$
\text { The density of } X+Y \text { is }
$$

2. (12 points) Give definitions or explanations of the following.
(a) Write down the definition of Jointly continuous random variables X and Y.

There exists $f(x, y) \geqslant 0$ s.t. for all $A \subseteq \mathbb{R}^{2}$

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f(x, y) d x d y
$$

(b) Let X, Y be jointly continuous random variables with joint density $f(x, y)$. What is the marginal densities of X and Y ?

$$
\begin{aligned}
& f_{X}(x)=\int_{\mathbb{R}} f(x, y) d y \\
& f_{Y}(y)=\int_{\mathbb{R}} f(x, y) d x
\end{aligned}
$$

(c) Let X, Y be jointly continuous random variables with joint density $f(x, y)$. What is the conditional probability density functions of X given $Y=y$?

$$
\text { If } f_{Y}(y)>0 \text {, then } f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

(d) Explain Normal approximation to binomial.

If $X \sim \operatorname{Bm}(n, p) \quad n:$ large, then

$$
\begin{array}{r}
\frac{x-n p}{\sqrt{n p(1-p)}} \text { is approxima } \\
\text { Page } 3 \text { of } 8
\end{array}
$$

3. A stick of length 1 is broken into two pieces at X, where X is a uniform random variable over $(0,1)$.
(a) (5 points) Let Y be the length of the longer piece. Find a function $f:(0,1) \rightarrow \mathbb{R}$ such that $Y=f(X)$.

$$
\begin{aligned}
& \text { Since } Y= \begin{cases}x & \text { if } \quad x \geqslant \frac{1}{2} \\
1-x & \text { if } 0<x<\frac{1}{2},\end{cases} \\
& Y=f(x) \quad \text { where } \\
& f(x)= \begin{cases}x & \text { if } \frac{1}{2} \leqslant x<1 \\
1-x & \text { if } 0<x<\frac{1}{2}\end{cases}
\end{aligned}
$$

(b) (5 points) Find $\mathbb{E}[Y]$.

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}[f(x)]=\int_{0}^{1} f(x) d x \\
& =\int_{0}^{\frac{1}{2}}(1-x) d x+\int_{\frac{1}{2}}^{1} x d x \\
& =\frac{3}{4}
\end{aligned}
$$

4. Let X, Y be independent exponential random variables with parameters λ_{1} and λ_{2} respectively. (a) (5 points) Is $Z:=\min \{X, Y\}$ an exponential random variable? Justify your answer.

$$
\begin{aligned}
& \text { Yes. } \\
& F_{z}(t)=\mathbb{P}(z \leqslant t)=\mathbb{P}(\min \{x, Y\} \leqslant t) \\
&=1-\mathbb{P}(\min \{x, Y Y>t) \\
&=1-\mathbb{P}(x>t, Y>t) \\
&=1-\mathbb{P}(x>t) \mathbb{P}(Y>t) \\
&=1-e^{-\lambda_{1} t} \cdot e^{-\lambda_{2} t} \\
&=1-e^{-\left(\lambda_{1}+\lambda_{2}\right) t} \quad \therefore \quad E \sim E_{p}\left(\lambda_{1}+\lambda_{2}\right)
\end{aligned}
$$

(b) (5 points) Is $W:=\max \{X, Y\}$ an exponential random variable? Justify your answer. No.

$$
\begin{aligned}
F_{w}(t) & =\mathbb{P}(\max \{x, y 4 \leqslant t) \\
& =\mathbb{P}(x \leqslant t) \mathbb{P}(Y \leqslant t) \\
& =\left(1-e^{-\lambda_{1} t}\right)\left(1-e^{-\lambda_{2} t}\right) \\
& \neq 1-e^{-\lambda t} \quad \text { for any } \lambda>0 .
\end{aligned}
$$

5. (8 points) The life of a certain type of car battery X is normally distributed with mean 50 and the standard deviation 6 (in 1000 miles), that is, $X \in N\left(50,6^{2}\right)$. Given that it has survived 50,000 miles, what is the conditional probability that the car battery survives another 15,000 miles?

$$
\begin{aligned}
\mathbb{P}\left(x>50+15 \int x>50\right) & =\frac{\mathbb{P}(z>2.5)}{\mathbb{P}(z>0)} \\
x=6 z+50 & =2(1-\mathbb{P}(z \leqslant 2.5)) \\
z \sim N(0,1) & =2(1-0.9938) \\
& =0.0124
\end{aligned}
$$

6. Let X, Y be jointly continuous random variables with joint density

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{x^{2} y^{2}}, & x, y \geqslant 1 \\ 0, & \text { otherwise }\end{cases}
$$

Let U, V be defined by

$$
U=X Y, \quad V=X / Y
$$

(a) (10 points) Find the joint density $f_{U, V}(u, v)$ of U and V.

$$
\begin{aligned}
& X=\sqrt{U V}=h_{1}(U, V) \\
& Y=\sqrt{\frac{U}{V}}=h_{2}(U, V) \\
& \left.\left|J_{h}\right|=\left\lvert\, \begin{array}{cc}
\frac{1}{2} \sqrt{\frac{V}{U}} & \frac{1}{2} \sqrt{\frac{v}{V}} \\
\frac{1}{2} \frac{1}{\sqrt{U V}} & -\frac{1}{2} \sqrt{\frac{\sigma^{V}}{V^{3}}}
\end{array}\right.\right) \left\lvert\,=\frac{1}{2 V}\right. \\
& \Rightarrow f_{U, v}(u, v)=f_{x, y}\left(\sqrt{u v}, \sqrt{\frac{u}{v}}\right) \cdot \frac{1}{2 v} \\
& = \begin{cases}\frac{1}{2 u^{2} v} & \text { if } \sqrt{u v} \geqslant 1, \\
\frac{u}{v} \geqslant 1 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

(b) (Extra credit: 4 points) Draw the region in the $u-v$ plane where $f_{U, V}(u, v)>0$.

$$
\sqrt{u v} \geqslant 1 \quad \text { and } \quad \sqrt{\frac{u}{v}} \geqslant 1
$$

$$
\Rightarrow \quad v \geqslant \frac{1}{u}, u \geqslant v, u \geqslant 1, v>0
$$

(c) (Extra credit: 4 points) Find the marginal density $f_{U}(u)$ of U.

Method 1:

$$
\begin{aligned}
f_{V}(u)=\int_{\mathbb{R}} f_{\sigma, v}(u, v) d v & = \begin{cases}\int_{\frac{1}{u}}^{u} \frac{1}{2 u^{2} v} d v, & , u \geqslant 1 \\
0, & , w \geqslant 1\end{cases} \\
& = \begin{cases}\frac{\log u}{u^{2}}, & 0, w \\
0,\end{cases}
\end{aligned}
$$

Method 2: For $t>1$,

$$
\begin{aligned}
& F_{v}(t)=\mathbb{P}(X Y \leqslant t)=\int_{1}^{t} \int_{1}^{\frac{t}{x}} \frac{1}{x^{2} y^{2}} d y d x=\int_{1}^{t} \frac{1}{x^{2}}\left(1-\frac{x}{t}\right) d x \\
& y_{t} \uparrow=\left(1-\frac{1}{t}\right)-\frac{1}{t} \log t \\
& f_{v}(t)=F_{V}(t)^{\prime}=\frac{1}{t^{2}}+\frac{\log t}{t^{2}}-\frac{1}{t^{2}} \\
& =\frac{\log t}{t^{2}}
\end{aligned}
$$

