Homework 6 Solution

Math 461: Probability Theory, Spring 2022
Daesung Kim

Due date: Mar 11, 2022

1. An urn contains 4 white and 5 black balls. We randomly choose 4 balls. If 2 of them are white and 2 are black, we stop. If not, we replace the balls in the urn and again randomly select 4 balls. This continues until exactly 2 of the 4 chosen are white. What is the probability that we shall make exactly n selections?

Solution: Let E be the event that a single drawing results in two white and two black balls. Then $\mathbb{P}(E)=\frac{\binom{4}{2}\binom{5}{2}}{\binom{9}{4}}=\frac{10}{21}$. Let X be the number of selections until E occurs. Thus X is a Geometric random variable with parameter $p=10 / 21$. Then

$$
\mathbb{P}(X=n)=\frac{11^{n-1} \cdot 10}{21^{n}}
$$

2. Let X be a negative binomial random variable with parameters r and p and let Y be a binomial random variable with parameters n and p. Show that

$$
\mathbb{P}(X>n)=\mathbb{P}(Y<r)
$$

Solution:

(a) Probabilistic proof: Consider a sequence of independent Bernoulli trials with success probability p. Then, Y is the number of success in the first n trials and X is the number of trials until r successes are obtained. If $X>n$, then it means that the number of success in the first n trials is less than r, that is, $Y<r$. Thus, we have $\{X>n\}=\{Y<r\}$.
(b) Combinatoric proof: Since

$$
\mathbb{P}(X>n)=1-\mathbb{P}(X \leqslant n)=1-\sum_{k=r}^{n}\binom{k-1}{r-1} p^{r}(1-p)^{k-r}=1-\sum_{k=r}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=\mathbb{P}(Y<r),
$$

it suffices to show that

$$
\begin{equation*}
\sum_{k=r}^{n}\binom{k-1}{r-1} p^{r}(1-p)^{k-r}=\sum_{k=r}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \tag{1}
\end{equation*}
$$

for all $r \leqslant n$. We fix $r>0$ and prove the claim by induction on $n=r, r+1, \cdots$. If $n=r$, then

$$
\sum_{k=r}^{r}\binom{k-1}{r-1} p^{r}(1-p)^{k-r}=p^{r}=\sum_{k=r}^{r}\binom{r}{k} p^{k}(1-p)^{r-k}
$$

Suppose (1) holds for $n \geqslant r$. Then,

$$
\begin{aligned}
\sum_{k=n+1}^{r}\binom{k-1}{r-1} p^{r}(1-p)^{k-r} & =\binom{n}{r-1} p^{r}(1-p)^{n+1-r}+\sum_{k=n+1}^{r}\binom{k-1}{r-1} p^{r}(1-p)^{k-r} \\
& =\binom{n}{r-1} p^{r}(1-p)^{n+1-r}+\sum_{k=r}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Using Pascal's identity $\left(\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}\right)$,

$$
\begin{aligned}
\sum_{k=r}^{n+1}\binom{n+1}{k} p^{k}(1-p)^{n+1-k} & =\sum_{k=r}^{n+1}\binom{n}{k-1} p^{k}(1-p)^{n+1-k}+\sum_{k=r}^{n+1}\binom{n}{k} p^{k}(1-p)^{n+1-k} \\
& =\binom{n}{r-1} p^{r}(1-p)^{n+1-r}+\sum_{k=r}^{n}\binom{n}{k} p^{k+1}(1-p)^{n-k}+\sum_{k=r}^{n}\binom{n}{k} p^{k}(1-p)^{n+1-k} \\
& =\binom{n}{r-1} p^{r}(1-p)^{n+1-r}+\sum_{k=r}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Thus, (1) holds for $n+1$.
3. Let X be a random variable with probability density function

$$
f(x)= \begin{cases}c(1-x)^{2} & -1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is the value of c ?
(b) What is the cumulative distribution function of X ?

Solution: (a) We have $1=\int_{-1}^{1} c(1-x)^{2} d x=-\left.\frac{c}{3}(1-x)^{3}\right|_{-1} ^{1}=\frac{8}{3} c$, so that $c=\frac{3}{8}$.
(b) We have $\int_{-1}^{x} f(y) d y=-\left.\frac{3}{8}(1-y)^{3}\right|_{-1} ^{x}=\frac{3}{8}\left(8-(1-x)^{3}\right)$ if $-1 \leqslant x \leqslant 1$. Hence,

$$
F(x)= \begin{cases}0 & x<-1 \\ 8-(1-x)^{3} & -1 \leqslant x<1 \\ 1 & x \geqslant 1\end{cases}
$$

4. A system consisting of one original unit plus a spare can function for a random amount of time X. If the density of X is given (in units of months) by

$$
f(x)= \begin{cases}C x e^{-x / 2} & x \geqslant 0 \\ 0 & x \leqslant 0\end{cases}
$$

What is the probability that the system functions for at least 4 months?

Solution: Determine $C: \int_{0}^{\infty} x e^{-\frac{x}{2}} d x=-\left.2 x e^{-\frac{x}{2}}\right|_{0} ^{\infty}+\int_{0}^{\infty} 2 e^{-\frac{x}{2}} d x=\left.(-2 x-4) e^{-\frac{x}{2}}\right|_{0} ^{\infty}=4$, so that $C=\frac{1}{4}$.
Now, we have $\mathbb{P}(X \geqslant 4)=\int_{4}^{\infty} \frac{1}{4} x e^{-\frac{x}{2}}=-\left.\left(\frac{x}{2}+1\right) e^{-\frac{x}{2}}\right|_{4} ^{\infty}=3 e^{-2}$.
5. The probability density function of X, the lifetime of a certain type of electronic device (measured in hours), is given by

$$
f(x)= \begin{cases}\frac{10}{x^{2}} & x>10 \\ 0 & x \leqslant 10\end{cases}
$$

(a) Find $\mathbb{P}(X>20)$.
(b) What is the cumulative distribution function of X ?
(c) What is the probability that, of 6 such types of devices, at least 3 will function for at least 15 hours? What assumptions are you making?

Solution:

(a) $\mathbb{P}(X>20)=\int_{20}^{\infty} \frac{10}{x^{2}} d x=-\left.\frac{10}{x}\right|_{20} ^{\infty}=\frac{1}{2}$.
(b)

$$
F(x)= \begin{cases}0 & x<10 \\ 1-\frac{10}{x} & x \geqslant 10\end{cases}
$$

(c) Let's assume that lifetimes of the six devices are independent of each other. Let $p=1-F(15)$. Then the desired probability is

$$
\sum_{i=3}^{6}\binom{6}{i} p^{i}(1-p)^{6-i}
$$

6. A filling station is supplied with gasoline once a week. If its weekly volume of sales in thousands of gallons is a random variable with probability density function

$$
f(x)= \begin{cases}5(1-x)^{4} & 0<x<1 \\ 0 & \text { otherwise } .\end{cases}
$$

what must the capacity of the tank be so that the probability of the supply's being exhausted in a given week is .01 ?

Solution: We want to find C such that $F(C) \geqslant 0.99$. We have $F(C)=\int_{0}^{C} 5(1-x)^{4} d x=-\left.(1-x)^{5}\right|_{0} ^{C}=$ $1-(1-C)^{5}$. We want $1-(1-C)^{5} \geqslant 0.99$, i.e., $(1-C)^{5} \leqslant 0.01$, hence $C \geqslant 1-(0.01)^{0.2}$.
7. Compute $\mathbb{E} X$ if X has a density function given by
(a)
(b)
(c)

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{4} x e^{-x / 2} & x>0 \\
0 & \text { otherwise. }\end{cases} \\
& f(x)= \begin{cases}c\left(1-x^{2}\right) & -1<x<1 \\
0 & \text { otherwise. }\end{cases} \\
& f(x)= \begin{cases}\frac{5}{x^{2}} & x>5 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Solution:

(a) $\mathbb{E} X=\int_{-\infty}^{\infty} x f(x) d x=\frac{1}{4} \int_{0}^{\infty} x^{2} e^{-\frac{x}{2}} d x=\left.\frac{1}{4}\left(-2 x^{2}-8 x-16\right) e^{-\frac{x}{2}}\right|_{0} ^{\infty}=4$.
(b) $\mathbb{E} X=\int_{-1}^{1} c\left(1-x^{2}\right) x d x=0$ by symmetry.
(c) $\mathbb{E} X=\int_{5}^{\infty} x \frac{5}{x^{2}} d x=\int_{5}^{\infty} \frac{5}{x} d x=\infty$.
8. Trains headed for destination A arrive at the train station at 15 -minute intervals starting at 7 A.M., whereas trains headed for destination B arrive at 15 -minute intervals starting at 7:05 A.M.
(a) If a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 A.M. and then gets on the first train that arrives, what proportion of time does he or she go to destination A?
(b) What if the passenger arrives at a time uniformly distributed between 7:10 and 8:10 A.M.?

Solution: (a) Let X be uniform on $[0,60]$ where X is the time in minutes after 7 am when the passenger arrives at the station. Then

$$
\begin{aligned}
\mathbb{P}(\text { passenger goes to } A) & =\mathbb{P}(5 \leqslant X<15)+\mathbb{P}(20 \leqslant X<30)+\mathbb{P}(35 \leqslant X<45)+\mathbb{P}(50 \leqslant X<60) \\
& =\frac{2}{3}
\end{aligned}
$$

(b) Same as above.
9. You arrive at a bus stop at 10 o'clock, knowing that the bus will arrive at some time uniformly distributed between 10 and 10:30.
(a) What is the probability that you will have to wait longer than 10 minutes?
(b) If, at 10:15, the bus has not yet arrived, what is the probability that you will have to wait at least an additional 10 minutes?

Solution: (a) $\mathbb{P}(X>10)=\frac{2}{3}$
(b) $\mathbb{P}(X>25 \mid X>15)=\frac{\mathrm{P}(X>25)}{\mathrm{P}(X>15)}=\frac{\frac{5}{30}}{\frac{15}{30}}=\frac{1}{3}$.
10. A stick of length 1 is broken at a uniformly random point, yielding two pieces. Let X and Y be the lengths of the shorter and longer pieces, respectively, and let $R=X / Y$ be the ratio of the lengths X and Y.
(a) Find the CDF and PDF of R.
(b) Find the expected value of R.

Solution:

(a) Let U be the uniform random variable in $[0,1]$. Then,

$$
R= \begin{cases}\frac{U}{1-U}, & 0 \leqslant U \leqslant \frac{1}{2} \\ \frac{1-U}{U}, & \frac{1}{2}<U \leqslant 1\end{cases}
$$

Thus, $F(x)=0$ for $x \leqslant 0$,

$$
F(x)=\mathbb{P}(R \leqslant x)=\mathbb{P}\left(\frac{U}{1-U} \leqslant x, U \leqslant \frac{1}{2}\right)+\mathbb{P}\left(\frac{1-U}{U} \leqslant x, U>\frac{1}{2}\right)=\frac{2 x}{1+x}
$$

for $0 \leqslant x \leqslant 1$, and $F(x)=1$ for $x \geqslant 1$. Taking the derivative in x, the pdf is $f(x)=2(1+x)^{-2}$ for $0 \leqslant x \leqslant 1$ and otherwise $f(x)=0$.
(b)

$$
\mathbb{E}[R]=\int_{0}^{1} \frac{2 x}{(1+x)^{2}} d x=1 / 6
$$

