MIDTERM EXAM 3

$$
\begin{aligned}
\text { DATE: } & \text { Now. } 8 \quad(W E D) \\
\text { TIME : } & 6: 30 P M-7: 45 P M \\
\text { PLACE : } & \text { SECTION A - HOGS BF } \\
& (8: 25) \\
& \text { SECTION E - HOWEY-PHYSICS } \\
& (11: 00)
\end{aligned}
$$

COVERAGE: UP TO 6.6.
REVIEW: NoV 8 in CLASS
CSAMPLE EXAMS: S22,F22,
i S23) MASTER WEBPAGE.

Math 1554 Linear Algebra Spring 2023
 Midterm 3

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Kim Prof Barone Prof Schroeder Prof Kumar

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, $\mathrm{X}^{\prime} \mathrm{s}$, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 8 pages of questions.

Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.

1. (a) (6 points) Suppose A is a real $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.

true false

$\bigcirc \quad$ If the projection of vector \vec{y} onto subspace W is equal to the zero vector, then $\vec{y} \in W^{\perp}$.
$\bigcirc \bigcirc$
If A and B are $n \times n$ orthogonal matrices, then $A B$ is also $n \times n$ and orthogonal.
$\bigcirc \bigcirc$
If $\{\vec{u}, \vec{v}\}$ is an orthonormal set in \mathbb{R}^{n}, then $\|\vec{u}+\vec{v}\|=\sqrt{2}$.

If A is row equivalent to a diagonalizable matrix B, then A is diagonalizable.

For any rectangular $m \times n$ matrix $A,(\operatorname{Row} A)^{\perp}=\left(\operatorname{Row} A^{T} A\right)^{\perp}$.
\bigcirc If A has the QR factorization $A=Q R$, then $\operatorname{Col} A=\operatorname{Col} Q$.
(b) (2 points) Indicate whether the following situations are possible or impossible. possible impossible
\bigcirc
A 2×2 real matrix A with eigenvalues $1+i$ and $-1-i$.

A diagonalizable matrix A that is similar to $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$.

Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(c) (2 points) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthonormal basis for subspace V. Fill in circles next to orthogonal bases for V; leave the other circles empty.
$\bigcirc\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$$\left\{\vec{v}_{3}, 4 \vec{v}_{1}, 3 \vec{v}_{2}\right\}$$\left\{\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{1}-\vec{v}_{2}, \vec{v}_{3}\right\}$

$$
\left\{\vec{v}_{1}, \vec{v}_{1}+\vec{v}_{2}, \vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}\right\}
$$

(d) (2 points) Let W be a 4-dimensional subspace of \mathbb{R}^{5} and let A be the standard matrix for the orthogonal projection onto W. The following situations are either possible or impossible. Fill in the circles next to the possible situations; leave the other circles empty.A is invertible.
A has eigenvalue zero.$\operatorname{Nul} A=W .^{\perp}$
$A v=v$, for some vector $v \in{ }^{\rho}$.
$A=$

2. (1 point) In the graph below, sketch $\operatorname{proj}_{\vec{u}}(\vec{v})$.

Math 1554 Linear Algebra, Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (9 points) Fill in the blanks.
(a) If A is 20×25 and $\operatorname{dim}\left(\operatorname{Col}(A)^{\perp}\right)=10$, the rank of A is \square
(b) If A is an $n \times n$ orthogonal matrix, $A^{T} A$ is equal to \square
(c) The distance between vector $\vec{u}=\binom{2}{3}$ and subspace $W=\operatorname{Span}(\vec{v})$, where $\vec{v}=\binom{1}{0}$ is equal to \square
(d) If u and v are orthogonal vectors in \mathbb{R}^{n} and the columns of $A \in \mathbb{R}^{n \times n}$ are orthonormal, then $(A u) \cdot(A v)$ is equal to \square (a number).
(e) If $\vec{b}=\binom{3}{-1}, \vec{u}=\binom{1}{1}, W=\operatorname{Span}(\vec{u})$, then $\operatorname{proj}_{\vec{u}} \vec{b}$ is the vector () .
(f) If $\vec{v}=\binom{1}{2}, W=\operatorname{Span}(\vec{v})$, a basis for W^{\perp} is the vector () .
(g) If A is 32×9 and $A \vec{x}=\vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{32}, then the number of pivot columns in A is \square
(h) If A is 30×8 and $\operatorname{dim}\left(\operatorname{Row}(A)^{\perp}\right)=1$, then $\operatorname{rank} A$ is equal to \square
(i) If $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$, then $\operatorname{dim} W^{\perp}=\square$.

Math 1554 Linear Algebra, Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
4. (4 points) If possible, give examples of the following. If it is not possible, write NP.
(a) A 4×5 non-zero matrix, A, in RREF, that satisfies $\operatorname{dim}(\underbrace{(\operatorname{Row}(A))^{\perp}})=3$.

$$
A=(
$$

$$
\operatorname{Null}(A)
$$

$\cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]=0$
(b) A 2×3 matrix such that $\operatorname{Col}(A)^{\perp}$ is spanned by

$$
\text { Null ('AT) } A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & -4 & -6
\end{array}\right)
$$

(c) A non-zero vector, \vec{w}, whose projection onto the space spanned by $\vec{v}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is the zero vector.

$$
\vec{w}=(
$$

(d) A 3×2 matrix A that is in echelon form, has QR factorization $A=Q R$, and $A=Q$.

$$
A=(
$$

5. (2 points) W is the subspace spanned by $\vec{u}=\left(\begin{array}{c}1 \\ 0 \\ -4\end{array}\right)$. Give a basis for W^{\perp}.

Math 1554 Linear Algebra, Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
6. (2 points) Given that \vec{u}_{1} and \vec{u}_{2} form an orthogonal set, compute the projection of \vec{y} onto $S=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

$$
\vec{u}_{1}=\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{c}
-4 \\
3 \\
0
\end{array}\right), \quad \vec{y}=\left(\begin{array}{c}
6 \\
3 \\
-2
\end{array}\right)
$$

7. (3 points) If $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$ has eigenvalues λ_{1}, λ_{2} with corresponding eigenvectors v_{1}, v_{2}, and $\lambda_{1}=2+i$, find $\lambda_{2}, v_{1}, v_{2}$.

Math 1554 Linear Algebra, Midterm 3. Your initials:
8. (4 points) Show all work for problems on this page. If $A=Q R=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)$, determine the least-squares solution to $A \hat{x}=\binom{\sqrt{2}}{2 \sqrt{2}}$. You do not need to determine A.

Math 1554 Linear Algebra, Midterm 3. Your initials:
9. (5 points) Show all work for problems on this page. Four points in \mathbb{R}^{3} with coordinates (x, y, z) are $(2,0,1),(0,-2,1),(1,-1,3)$, and $(1,1,3)$. Determine the coefficients c_{1} and c_{2} for the plane $z=c_{1} x+c_{2} y$ that best fits the points using the method of least-squares.

$$
c_{1}=\square \quad c_{2}=\square
$$

Math 1554 Linear Algebra, Midterm 3. Your initials:
10. (4 points) Show all work for problems on this page. Write \vec{y} as the sum of a vector \hat{y} in Span $\{\vec{u}\}$ and a vector \vec{z} orthogonal to \vec{u}.

$$
\vec{y}=\left(\begin{array}{l}
5 \\
2 \\
4 \\
1
\end{array}\right), \quad \vec{u}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

11. (4 points) Find matrices P and D such that $A=P D P^{-1}$ where D is a diagonal matrix and P is an invertible matrix.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]
$$

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler
Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false. true false

A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.
An invertible matrix A is diagonalizable if and only if its inverse A^{-1} is diagonalizable.

If $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$, then \vec{u} is orthogonal to $(\vec{w}-\vec{v})$.
If the vectors \vec{u} and \vec{v} are orthogonal then $\|\vec{u}+\vec{v}\|=\|\vec{u}\|+\|\vec{v}\|$.
$\bigcirc \quad$ If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\left\|\operatorname{proj}_{W}(\vec{y})\right\|$ is the shortest distance between W and \vec{y}.
$\bigcirc \quad$ If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\vec{y}-\operatorname{proj}_{W}(\vec{y})$ is in W^{\perp}.
$\bigcirc \quad$ If W is a subspace of \mathbb{R}^{n} and $\vec{y} \in \mathbb{R}^{n}$ such that $\vec{y} \cdot \vec{w}=0$ for some vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$.
$\bigcirc \bigcirc$ The line of best fit $y=\beta_{0}+\beta_{1} x$ for the points $(1,2),(1,3)$, and $(1,4)$ is unique.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible

A 5×5 real matrix A such that A has no real eigenvalues.
An $m \times n$ matrix U where $U^{T} U=I_{n}$ and $n>m$.
A 2-dimensional subspace W of \mathbb{R}^{3} and a vector $\vec{y} \in W$ such that $\left\|\vec{v}_{1}-\vec{y}\right\|=\left\|\vec{v}_{2}-\vec{y}\right\|$ where $\vec{v}_{1}, \vec{v}_{2} \in W^{\perp}$ and $\vec{v}_{1} \neq \vec{v}_{2}$.

A matrix $A \in \mathbb{R}^{3 \times 4}$ such that the linear system $A \vec{x}=\vec{b}$ has a unique least-squares solution.

Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(c) (2 points) An $m \times n$ matrix $A=\left[\begin{array}{lll}\vec{a}_{1} & \cdots & \vec{a}_{n}\end{array}\right]$ has non-zero orthogonal columns and $A^{T} A=2 I_{n}$. Which of the following statements is FALSE?
$(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ for every \vec{x} and \vec{y} in \mathbb{R}^{n}.
$n \leq m$.
O If we apply the Gram-Schmidt process to $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ we obtain the same set $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$.
If $A=Q R$ is the QR factorization of A, then R is a diagonal matrix.
2. (3 points) Find a, b, c so that the set of vectors $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is an orthogonal set.

$$
\vec{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \vec{u}_{2}=\left(\begin{array}{c}
-2 \\
0 \\
a
\end{array}\right) \quad \vec{u}_{3}=\left(\begin{array}{c}
-1 \\
b \\
c
\end{array}\right)
$$

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (8 points) Fill in the blanks.
(a) Suppose \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^{n} and that \vec{v} is a unit vector. If $(2 \vec{u}+\vec{v}) \cdot(\vec{u}+5 \vec{v})=13$, determine the length of \vec{u}.

$$
\|\vec{u}\|=\square
$$

(b) The normal equations for the least-squares solution to $A \vec{x}=\vec{b}$ are given by:

(c) Compute the length (magnitude) of the vector \vec{y}.

$$
\vec{y}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(d) Let $A=\left[\begin{array}{cc}2 & -2 \\ 2 & 2\end{array}\right]$. The vector $\vec{v}=\binom{-1-i}{-1+i}$ is an eigenvector of A. Find the associated eigenvalue λ for the eigenvector \vec{v} of A. \qquad

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
4. (4 points) Fill in the blanks.
(a) Let $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ and let $\vec{y}=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$. Calculate the projection of \vec{y} onto the subspace W, and find the distance from \vec{y} to W.

$$
\operatorname{dist}(\vec{y}, W)=\square
$$

(b) Let $W=\operatorname{span}\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}, L=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$. Find all vectors $\vec{u} \in L$ such that the distance from \vec{u} to W is equal to 2 .

Midterm 3. Your initials:
5. (6 points) Show all work for problems on this page.

One of the eigenvalues of the matrix A is $\lambda=1$. Diagonalize the matrix.

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

6. (3 points) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that \vec{v}_{1} is an eigenvector of A with eigenvalue $\lambda_{1}=4$, and \vec{v}_{2} is an eigenvector of A with eigenvalue $\lambda_{2}=-3$.

$$
\vec{v}_{1}=\binom{3}{2}, \quad \vec{v}_{2}=\binom{1}{1}
$$

Midterm 3. Your initials:
7. (4 points) Show all work for problems on this page.

Let $\mathcal{B}=\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ be a basis for a subspace W of \mathbb{R}^{4}, where

$$
\vec{x}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
2
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)
$$

(a) Apply the Gram-Schmidt process to the set of vectors $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ to find an orthogonal basis $\mathcal{H}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ for W. Clearly show all steps of the Gram-Schmidt process.

(b) In the space below, check that the vectors in the basis \mathcal{H} form an orthogonal set.

Midterm 3. Your initials:
8. (4 points) Show all work for problems on this page.

If A has the following QR factorization

$$
A=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
7 & 2 \\
0 & 3
\end{array}\right), \text { and } \vec{b}=\left(\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right)
$$

compute the least-square solution to the equation $A \vec{x}=\vec{b}$.

9. (4 points) Compute the least squares line $y=c_{1}+c_{2} x$ that best fits the data

x	-1	0	1
y	4	2	5

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Barone Prof Shirani Prof Simone Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

$$
\begin{align*}
& A \vec{x}=\operatorname{prjj}(b) \\
& A \overrightarrow{C l}(A)=\operatorname{proj} C_{0}(A) \tag{b}
\end{align*}
$$

Midterm 3. Your initials: \qquad -
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false
\bigcirc The matrix $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]$ is diagonalizable.
\bigcirc If W is the subspace of \mathbb{R}^{3} spanned by $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)$, then $\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ is a vector in W^{\perp}.

$$
V^{\top} \cdot U=I
$$

If U is a 3×2 matrix with orthonormal columns, then for every $y \in \operatorname{Col}(U)$ re have $\vec{y}=U U^{T} \vec{y}$.
\bigcirc If the matrix A has orthogonal columns, then $A^{T} A$ is a diagonal matrix.
$\bigcirc \bigcirc$ Assume $n \neq m$. If $A=Q R$ is the QR factorization of $A \in \mathbb{R}^{n \times m}$, then $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{n \times m}$.

$$
A^{\top} A \vec{x}=\vec{A} b
$$

If $A=Q R$ is a QR factorization of A, then $A^{T} A=R^{T} R$.
(1) If \hat{x} and \hat{y} are 0 unions of $A \vec{x}=\hat{y}$, then $\hat{x}-\hat{y} \in \operatorname{Nul}(A)$.

Suppose A is such that T_{A} is not one-to-one, and \vec{b} is not in the range of T. Then $A \vec{x}=\vec{b}$ has a unique least-squares solution.
(b) (4 points) Indicate whether the following situations are possible or impossible. $A \in \mathbb{R}^{m \times n}$ is zero, and the linear system $A \vec{x}=\vec{b}$ is inconsistent.

$$
\begin{aligned}
& \left.\begin{array}{rl}
& \in 3 \times 2 \\
U \cdot U^{\top} \cdot \vec{y} & =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \\
& =\left(u_{1} \quad u_{2}\right.
\end{array}\right] \\
& y \in \operatorname{col}(t) \gamma \Rightarrow y=c_{1} \cdot u_{1}+c_{\uparrow}^{c_{2}} \cdot u_{2} \\
& y=u \cdot U^{\top} \cdot y \quad c_{1}=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}}=y \cdot u_{1} \\
& c_{2}=y \cdot u_{2} \\
& U \cdot U^{\top} y=\quad \operatorname{proj}_{\operatorname{Col}_{0}(U)}(y)
\end{aligned}
$$

Midterm 3. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
(c) (2 points) The standard matrix of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has orthonormal columns. Which one of the following statements is false?
Choose only one.

$\bigcirc T(\vec{x})\|=\| \vec{x} \|$ for all \vec{x} in \mathbb{R}^{3}. T.
If two non-zero vectors \vec{x} and \vec{y} in \mathbb{R}^{3} are scalar multiples of each other, then $\|T(\vec{x}+\vec{y})\|^{2}=\|T(\vec{x})\|^{2}+\|T(\vec{y})\|^{2} . \quad y=2 \vec{x}$
\bigcirc If \mathcal{P} is a parallelepiped in \mathbb{R}^{3}, then the volume of $T(\mathcal{P})$ is equal to the volume of \mathcal{P}.
T is one-to-one.

$$
\begin{gathered}
A^{\top} A=I \\
\frac{\operatorname{det}\left(A^{\top} \cdot A\right)}{\prime \prime}=1 \\
\operatorname{det}\left(A^{\top}\right) \cdot \operatorname{det}(A) \\
(\operatorname{det}(A))^{2}
\end{gathered}
$$

$\|3 T(\vec{x})\|^{2}=\|T(x)\|^{2}+\|2 \cdot T(x)\|^{2}$ $g\|T(x)\|^{2}=\|T(\vec{x})\|^{2}+4\|T(\vec{x})\|^{2}$
2. (2 points) Suppose that, in the QR factorization of A, we have Q as given below. Find R.

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right] \quad Q=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 / \sqrt{3} \\
1 & 1 / \sqrt{3} \\
1 & -\sqrt{3} \\
1 & 1 / \sqrt{3}
\end{array}\right]
$$

Note: Please fill in the blanks and do not place values in front of the matrix for this problem.

$$
R=\left[\begin{array}{ll}
{[} & - \\
\square & -
\end{array}\right]
$$

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (2 points) Using only 0's and 1's in your answer, give an example of a 2×2 matrix that is invertible but not diagonalizable.

$$
\left(\begin{array}{l}
\\
\end{array}\right)
$$

4. (6 points) Fill in the blanks.
(a) Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be orthogonal vectors each with length 2 . Determine the length of the vector $2 \vec{u}+\vec{v}$. \square
(b) Suppose A is a 7×5 matrix such that $\operatorname{dim}(\text { Row } A)^{\perp}=4$. Determine the dimension of the column space of A. \square
(c) Suppose $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is an orthogonal basis for a subspace \mathcal{W} of \mathbb{R}^{n}, and \vec{x} belongs to the subspace \mathcal{W}. Suppose also that

$$
\vec{v}_{1} \cdot \vec{v}_{1}=2, \vec{v}_{2} \cdot \vec{v}_{2}=4, \vec{v}_{1} \cdot \vec{x}=6, \text { and } \vec{v}_{2} \cdot \vec{x}=-4 .
$$

Find $[\vec{x}]_{\mathcal{B}}$ the coordinates of \vec{x} in the basis \mathcal{B}.

Midterm 3. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (6 points) Let $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ be an orthogonal basis for \mathbb{R}^{3}, where

$$
\vec{u}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right), \quad \vec{u}_{3}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

Let \mathcal{W} be a subspace of \mathbb{R}^{3} that is spanned by \vec{u}_{1} and \vec{u}_{2}.
(a) Give an orthonormal basis for \mathcal{W}^{\perp}.

(b) What is the closest vector in \mathcal{W} to the vector $\vec{y}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$?

(c) Give a vector $\vec{x} \in \mathbb{R}^{3}$ that satisfies all of the following conditions:

- \vec{x} is orthogonal to \vec{u}_{3}.
- $\operatorname{Proj}_{\mathcal{L}_{1}} \vec{x}=2 \vec{u}_{1}$, where $\mathcal{L}_{1}=\operatorname{span}\left\{\vec{u}_{1}\right\}$.
- $\operatorname{Proj}_{\mathcal{L}_{2}} \vec{x}=3 \vec{u}_{2}$, where $\mathcal{L}_{2}=\operatorname{span}\left\{\vec{u}_{2}\right\}$.

Midterm 3. Your initials: \qquad
6. (6 points) Show work on this page with work under the problem, and your answer in the box. Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 2\end{array}\right]$.
(i) List the eigenvalues of A.
(ii) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If this is not possible, write NP.

$$
P=[\square]
$$

Midterm 3. Your initials: \qquad
7. (6 points) Show work on this page with work under the problem, and your answer in the box. Find an orthogonal basis of the subspace spanned by the set of vectors shown below.

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

Note: In order to receive full credit you must clearly show all steps of the Gram-Schmidt process applied to the vectors.

Midterm 3. Your initials: \qquad
8. (8 points) Show work on this page with work under the problem, and your answer in the box.

In this problem, you will use the least-squares method to find the values α and β which best fit the curve

$$
y=\alpha \cdot \frac{1}{1+x^{2}}+\beta
$$

to the data points $(-1,1),(0,-1),(1,0)$ using the parameters α and β.
(i) What is the augmented matrix for the linear system of equations associated to this least squares problem?

(ii) What is the augmented matrix for the normal equations for this system.
(iii) Find a least-squares solution to the linear system from (i) to determine the parameters α and β of the best fitting curve.

Math 1554 Linear Algebra Spring 2023
 Midterm 3 Make-up

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad
@gatech.edu

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Kim Prof Barone Prof Schroeder Prof Kumar

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 8 pages of questions.

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (6 points) Suppose A is a real $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false
$\bigcirc \quad$ For any line $L \in \mathbb{R}^{2}$ passing through the origin, the matrix corresponding to the transformation that reflects across the line L must always be diagonalizable.

If A and B are $n \times n$ orthogonal matrices, then $A B$ is also $n \times n$ and orthogonal.

If A is the reduced row echelon form (RREF) of B and A is diagonalizable, then B is diagonalizable.
$\bigcirc \quad$ If $\vec{b} \in \operatorname{Col}(A)$, then the least squares solution to the linear system $A \vec{x}=\vec{b}$ is unique.
$\bigcirc \bigcirc \quad$ For any rectangular $m \times n$ matrix $A,(\operatorname{Nul} A)^{\perp}=\operatorname{Row} A^{T} A$.
$\bigcirc \quad$ If the distance of \vec{w} from \vec{v} is equal to the distance of \vec{w} from $-\vec{v}$, then $\vec{w} \cdot \vec{v}=0$.
(b) (2 points) Indicate whether the following situations are possible or impossible.
possible impossible
$\bigcirc \quad$ A diagonal matrix A that is similar to $\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$.

An orthogonal matrix A such that $|\operatorname{det} A| \neq 1$.

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
(c) (2 points) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthonormal basis for subspace V. Fill in circles next to orthogonal bases for V; leave the other circles empty.
$\bigcirc\left\{\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{1}+\vec{v}_{3}, \vec{v}_{2}+\vec{v}_{3}\right\}$
$\bigcirc\left\{\vec{v}_{3}, 2 \vec{v}_{1},-\vec{v}_{2}\right\}$$\left\{\vec{v}_{1}+\vec{v}_{2}, \vec{v}_{1}-\vec{v}_{2}, \vec{v}_{3}\right\}$
$\bigcirc\left\{\vec{v}_{1}, \vec{v}_{2}-\vec{v}_{3}\right\}$

$$
A \vec{x}=\lambda^{\vec{x}}
$$

(d) (2 points) Let W be a 3-dimensional subspace of \mathbb{R}^{6} and let A be the standard matrix for the orthogonal projection onto W. The following situations are either possible or impossible. Fill in the circles next to the possible situations; leave the other circles empty.None of the eigenvalues of A are zero.
$\bigcirc A$ is singular.
$A \vec{v}=\overrightarrow{0}$, for some non-zerø vector $v \in W$.
\bigcirc
$\operatorname{dim} \operatorname{Nul} A=\operatorname{dim} \operatorname{Col} A .=3$
$<\begin{aligned} & \operatorname{Nul}(A)=W^{\perp} \\ & \operatorname{Col}(A)=W\end{aligned}$
2. (1 point) In the graph below, sketch $\operatorname{proj}_{\vec{v}}(\vec{u})$.

Math 1554 Linear Algebra, Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (9 points) Fill in the blanks.
(a) If A is 15×17 and $\operatorname{dim}\left(\operatorname{Col}(A)^{\perp}\right)=10$, the rank of A is \square.
(b) The distance between vector $\vec{u}=\binom{4}{5}$ and subspace $W=\operatorname{Span}(\vec{v})$, where $\vec{v}=\binom{0}{1}$ is equal to \qquad
(c) If $\vec{v}_{1}=\binom{1}{-1}$ and $\vec{v}_{2}=\binom{1}{1}$, then $v_{1} v_{2}^{T}$ is the matrix (\quad).
(d) The distance between the vector $\vec{u}=\left(\begin{array}{c}0 \\ -5 \\ 2\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}-4 \\ -1 \\ 8\end{array}\right)$ is equal to \square.
(e) If $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$, then $\operatorname{dim} W^{\perp}=\square$.

Math 1554 Linear Algebra, Midterm 3 Make-up. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.
4. (4 points) If possible, give examples of the following. If it is not possible, write NP.
(a) A 4×5 matrix A with $\left.\operatorname{Col} A=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right]^{T}\right\}$, that satisfies $\operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right)=4$.

$$
A=(
$$

(b) A 2×3 matrix such that $\operatorname{Col}(A)^{\perp}$ is spanned by $\binom{1}{2}$.

$$
A=(\quad)
$$

(c) A non-zero vector, \vec{w}, whose projection onto the $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)\right\}$ is the zero vector.

$$
\vec{w}=(\quad)
$$

(d) A 3×2 matrix A that is in echelon form, has QR factorization $A=Q R$, and $A=Q$.

$$
A=(
$$

5. (2 points) W is the subspace spanned by $\vec{u}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$. Give a basis for W^{\perp}.

Math 1554 Linear Algebra, Midterm 3 Make-up. Your initials:
6. (5 points) Show all work for problems on this page. Let $W=\operatorname{Nul}(A)$ where

$$
A=\left[\begin{array}{cccc}
3 & 1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right] \quad \text { and } \quad \vec{y}=\left[\begin{array}{l}
3 \\
1 \\
5 \\
1
\end{array}\right]
$$

(a) Find $\operatorname{proj}_{W^{\perp}}(\vec{y})$. Please box your answer.
(b) Find $\vec{y}=\vec{u}+\vec{v}$ where $\vec{u} \in W$ and $\vec{v} \in W^{\perp}$. Please box your answer.

Math 1554 Linear Algebra, Midterm 3 Make-up. Your initials:
7. (4 points) Show all work for problems on this page. Compute the equation of the line $y=\beta_{0}+\beta_{1} x$ of best fit using the least-squares method for the data below. Please box your answer.

$$
\begin{array}{l|lll}
\mathrm{x} & -1 & 0 & 1 \\
\hline \mathrm{y} & 0 & 1 & 5
\end{array}
$$

8. (5 points) Show all work for problems on this page. Let $\mathcal{B}=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a basis for a subspace W of \mathbb{R}^{4} where

$$
\vec{x}_{1}=\left(\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right)
$$

Apply the Gram-Schmidt process to the set $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ to find an orthonormal basis $\mathcal{H}=\left\{\vec{y}_{1}, \vec{y}_{2}, \vec{y}_{3}\right\}$ for the subspace W. Please box your answer.

Math 1554 Linear Algebra, Midterm 3 Make-up. Your initials: \qquad
9. (4 points) Show all work for problems on this page. If $A=\left(\begin{array}{cc}-5 & -5 \\ 5 & -5\end{array}\right)$ has eigenvalues λ_{1}, λ_{2} with corresponding eigenvectors v_{1}, v_{2}, and $\lambda_{1}=-5+5 i$, find $\lambda_{2}, v_{1}, v_{2}$.

10. (4 points) Find matrices P and D such that $A=P D P^{-1}$ where D is a diagonal matrix and P is an invertible matrix.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]
$$

Math 1554 Linear Algebra Fall 2022
 Midterm 3 Make-up

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:

Prof Vilaca Da Rocha Prof Kafer Prof Barone Prof Wheeler

Prof Blumenthal Prof Sun Prof Shirani

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.

true false

A matrix $A \in \mathbb{R}^{n \times n}$ and its transpose A^{T} have the same eigenvectors.

The line of best fit $y=\beta_{0}+\beta_{1} x$ for the points $(1,1),(2,1)$, and $(3,1)$ is unique.

If the vectors \vec{u} and \vec{v} are orthogonal then $\|\vec{u}+\vec{v}\|=\|\vec{u}\|+\|\vec{v}\|$.
A triangular matrix A is diagonalizable if and only if A is invertible.
If $A=P D P^{-1}$ where D is a diagonal matrix, then D and A have the same eigenvectors.
$\bigcirc \quad$ If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\operatorname{proj}_{W}(\vec{y})$ is in W.
$\bigcirc \quad$ If $\vec{y} \in \mathbb{R}^{n}$ is a nonzero vector and W is a subspace of \mathbb{R}^{n}, then $\left\|\vec{y}-\operatorname{proj}_{W}(\vec{y})\right\|$ is the shortest distance between W and \vec{y}.
$\bigcirc \quad$ If W is a subspace of \mathbb{R}^{n} and $\vec{y} \in \mathbb{R}^{n}$ such that $\vec{y} \cdot \vec{w}=0$ for some vector $\vec{w} \in W$, then $\vec{y} \in W^{\perp}$.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible

A 3×3 real matrix A such that A has eigenvalues $2,3,2 i+3$.
An $m \times n$ matrix U where $U^{T} U=I_{n}$ and $n>m$.
A 2-dimensional subspace W of \mathbb{R}^{3} and a vector $\vec{y} \in W$ such that $\left\|\vec{v}_{1}-\vec{y}\right\|=\left\|\vec{v}_{2}-\vec{y}\right\|$ where $\vec{v}_{1}, \vec{v}_{2} \in W^{\perp}$ and $\vec{v}_{1} \neq \vec{v}_{2}$.

A vector $\vec{y} \in \mathbb{R}^{3}$ and a subspace W in \mathbb{R}^{3} such that $\vec{y}=\vec{w}+\vec{z}$ where \vec{w} is in W, but \vec{z} is not in W^{\perp}.

Midterm 3 Make-up. Your initials: \qquad You do not need to justify your reasoning for questions on this page.

(c) (2 points) An $m \times n$ matrix $A=\left[\begin{array}{lll}\vec{a}_{1} & \cdots & \vec{a}_{n}\end{array}\right]^{[} \mathbb{R}^{m}$ has nonzero orthogonal columns and $A^{T} A=2 I_{n}$. Which of the following statements is FALSE? $\notin(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ for every \vec{x} and \vec{y} in \mathbb{R}^{n}.
$\bigcirc n \leq m$.
If we apply the Gram-Schmidt process to $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ we obtain the same set $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\} \quad$ r
\bigcirc If $A=Q R$ is the QR factorization of A, then R is a diagonal matrix.

$$
\begin{aligned}
& (A \vec{x}) \cdot(A \vec{y})=(\vec{A} \vec{x})^{\top} \cdot\left(A_{y}\right)=\vec{x}^{\top} \cdot A^{\top} \cdot A \cdot y \\
& R=\left(\begin{array}{ccc}
\left\|a_{1}\right\| & \\
\| \\
\left.\begin{array}{cc}
a_{1} \cdot u_{1} & a_{2} \cdot u_{1}^{\prime} \\
0 & a_{2} \cdot \\
0 & a_{2} \cdot u_{2} \\
\vdots & \vdots \\
0 & \cdots \\
0 & \\
& \cdots a_{2} \|
\end{array}\right) \\
&
\end{array}\right) \\
& =2 \cdot x^{\top} \cdot y \\
& =2 \vec{x} \cdot \vec{y} \\
& a_{1} \cdot u_{1}=\frac{a_{1}}{\left\|a_{1}\right\|} \cdot a_{1}=\frac{\left\|a_{1}\right\|^{2}}{\left\|a_{1}\right\|}=\left\|a_{1}\right\| .
\end{aligned}
$$

2. (3 points) Using only 0's and 1's in your answers, give an example of 2×2 matrices that satisfy: A is invertible but not diagonalizable, and B is diagonalizable but not invertible.

$$
A=(\quad B=(
$$

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (8 points) Fill in the blanks.
(a) Suppose \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^{n} and that \vec{v} is a unit vector. If $(3 \vec{u}+\vec{v}) \cdot(\vec{u}+4 \vec{v})=31$, determine the length of \vec{u}.

$$
\|\vec{u}\|=\square
$$

(b) The normal equations for the least-squares solution to $A \vec{x}=\vec{b}$ are given by:

(c) Compute the length (magnitude) of the vector \vec{y}.

$$
\vec{y}=\left(\begin{array}{cc}
\frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)\binom{4}{3}
$$

(d) Let $A=\left[\begin{array}{cc}3 & 3 \\ -3 & 3\end{array}\right]$. The vector $\vec{v}=\binom{1+i}{1-i}$ is an eigenvector of A. Find the associated eigenvalue λ for the eigenvector \vec{v} of A. \qquad

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
4. (4 points) Fill in the blanks.
(a) Let $W=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ and let $\vec{y}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. Calculate the projection of \vec{y} onto the subspace W, and find the distance from \vec{y} to W.

$$
\operatorname{dist}(\vec{y}, W)=\square
$$

(b) Let $W=\operatorname{span}\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}, L=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$. Find all vectors $\vec{u} \in L$ such that the distance from \vec{u} to W is equal to 2 .

Midterm 3 Make-up. Your initials:
5. (6 points) Show all work for problems on this page.

One of the eigenvalues of the matrix A is $\lambda=1$. Diagonalize the matrix.

$$
A=\left(\begin{array}{rrr}
-2 & -3 & -2 \\
2 & 3 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

6. (3 points) Find a matrix $A \in \mathbb{R}^{2 \times 2}$ such that \vec{v}_{1} is an eigenvector of A with eigenvalue $\lambda_{1}=2$, and \vec{v}_{2} is an eigenvector of A with eigenvalue $\lambda_{2}=3$.

$$
\vec{v}_{1}=\binom{2}{3}, \quad \vec{v}_{2}=\binom{1}{1}
$$

Midterm 3 Make-up. Your initials:
7. (4 points) Show all work for problems on this page.

Let $\mathcal{B}=\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ be a basis for a subspace W of \mathbb{R}^{4}, where

$$
\vec{x}_{1}=\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
2
\end{array}\right) .
$$

(a) Apply the Gram-Schmidt process to the set of vectors $\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ to find an orthogonal basis $\mathcal{H}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ for W. Clearly show all steps of the Gram-Schmidt process.

(b) In the space below, check that the vectors in the basis \mathcal{H} form an orthogonal set.

Midterm 3 Make-up. Your initials: \qquad
8. (4 points) Show all work for problems on this page.

If A has the following QR factorization

$$
A=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right), \text { and } \vec{b}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)
$$

compute the least-square solution to the equation $A \vec{x}=\vec{b}$.

9. (4 points) Compute the least squares line $y=c_{1} x+c_{2}$ that best fits the data

$$
\begin{array}{c|ccc}
x & -1 & 0 & 1 \\
\hline y & 1 & -2 & 2
\end{array}
$$

Math 1554 Linear Algebra Spring 2022

Midterm 3 Make-up

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

Name: \qquad GTID Number: \qquad

Student GT Email Address: \qquad
@gatech.edu

Section Number (e.g. A3, G2, etc.) \qquad TA Name \qquad

Circle your instructor:
Prof Barone Prof Shirani Prof Simone Prof Timko

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 7 pages of questions.

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is an $m \times n$ matrix and $\vec{b} \in \mathbb{R}^{m}$ unless otherwise stated. Select true if the statement is true for all choices of A and \vec{b}. Otherwise, select false.
true false
\bigcirc The matrix $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ is diagonalizable.
\bigcirc If W is the subspace of \mathbb{R}^{3} spanned by $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$, then $\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$ is a vector in W^{\perp}.
\bigcirc If U is a 3×2 matrix with orthonormal columns, then $\left(U U^{T}\right)^{2}=U U^{T}$.
\bigcirc If $A^{T} A=3 I$, then A has orthogonal columns.
Assume $n \neq m$. If $A=Q R$ is the QR factorization of $A \in \mathbb{R}^{m \times n}$, then $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$.
\bigcirc If $A=Q R$ is a $Q R$ factorization of A, then $A^{T} A=R^{T} R$.
If \hat{x} and \hat{y} are least-squares solutions of $A \vec{x}=\vec{b}$, then $\hat{x}-\hat{y} \in \operatorname{Nul}(A)$.
Suppose A is such that for every \vec{b} the system $A \vec{x}=\vec{b}$ has a unique leastsquares solution. Then $\operatorname{det}\left(A^{T} A\right) \neq 0$.
(b) (4 points) Indicate whether the following situations are possible or impossible. possible impossible

\bigcirc| A is a real 5×5 diagonalizable matrix with exactly three distinct real |
| :--- |
| eigenvalues whose geometric multiplicities are 1,1 , and 2 , respectively. |

\vec{u} and \vec{v} are nonzero orthogonal vectors such that $\\|\vec{u}+\vec{v}\\|^{2}<\\|\vec{u}\\|^{2}+\\|\vec{v}\\|^{2}$.

The distance between a vector $\vec{b} \in \mathbb{R}^{m}$ and the column space of a matrix
$A \in \mathbb{R}^{m \times n}$ is nonzero, and the linear system $A \vec{x}=\vec{b}$ has a unique least
squares solution.

\bigcirc| \mathcal{W} is a 2-dimensional subspace of \mathbb{R}^{3}, and there exists a linearly indepen- |
| :--- |
| |
| dent set of vectors $\{\vec{x}, \vec{y}\}$ in \mathbb{R}^{3} such that $\operatorname{Proj}_{\mathcal{W}} \vec{x}=0$ and $\operatorname{Proj} j_{\mathcal{W}} \vec{y}=0$. |

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
(c) (2 points) The standard matrix of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has orthonormal columns. Which one of the following statements is false?
Choose only one.
If $T(\vec{x})=A \vec{x}$ then $\operatorname{det}(A)=1$.
$T(\vec{x}) \cdot T(\vec{y})=T(\vec{x} \cdot \vec{y})$ for all \vec{x}, \vec{y} in \mathbb{R}^{3}
$\bigcirc T(\vec{x})\|=\| \vec{x} \|$ for all \vec{x} in \mathbb{R}^{3}.
\bigcirc is onto.
2. (2 points) Suppose that, in the QR factorization of A, we have Q as given below. Find R.

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
1 & 2 \\
1 & 2 \\
-1 & -2
\end{array}\right] \quad Q=\frac{1}{2}\left[\begin{array}{cc}
-1 & \sqrt{3} \\
1 & 1 / \sqrt{3} \\
1 & 1 / \sqrt{3} \\
-1 & -1 / \sqrt{3}
\end{array}\right]
$$

Note: Please fill in the blanks and do not place values in front of the matrix for this problem.

$$
R=\left[\begin{array}{ll}
{[} & - \\
\square & -
\end{array}\right]
$$

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (2 points) Using only 0's and 1's in your answer, give an example of a 2×2 matrix that is not invertible and not diagonalizable. If not possible, write NP.

$$
(\square)
$$

4. (6 points) Fill in the blanks.
(a) Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be vectors each with length 2 and suppose $u \cdot v=-1$. Determine the length of the vector $3 \vec{u}+\vec{v}$.
(b) Suppose A is a 5×7 matrix such that $\operatorname{dim}(\operatorname{Nul} A)^{\perp}=4$. Determine the dimension of the orthogonal complement of the column space of A. \square
(c) Suppose $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is an orthogonal basis for a subspace \mathcal{W} of \mathbb{R}^{n}, and \vec{x} belongs to the subspace \mathcal{W}. Suppose also that

$$
\vec{v}_{1} \cdot \vec{x}=4, \vec{v}_{2} \cdot \vec{x}=-3, \vec{v}_{1} \cdot \vec{v}_{1}=2, \text { and } \vec{v}_{2} \cdot \vec{v}_{2}=6 .
$$

Find $[\vec{x}]_{\mathcal{B}}$ the coordinates of \vec{x} in the basis \mathcal{B}.

Midterm 3 Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (6 points) Let $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ be an orthogonal basis for \mathbb{R}^{3}, where

$$
\vec{u}_{1}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \quad \vec{u}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) .
$$

Let \mathcal{W} be a subspace of \mathbb{R}^{3} that is spanned by \vec{u}_{1} and \vec{u}_{2}.
(a) Give an orthonormal basis for \mathcal{W}^{\perp}.

(b) What is the closest vector in \mathcal{W} to the vector $\vec{y}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$?

(c) Give a vector $\vec{x} \in \mathbb{R}^{3}$ that satisfies all of the following conditions:

- \vec{x} is orthogonal to \vec{u}_{3}.
- $\operatorname{Proj}_{\mathcal{L}_{1}} \vec{x}=2 \vec{u}_{1}$, where $\mathcal{L}_{1}=\operatorname{span}\left\{\vec{u}_{1}\right\}$.
- $\operatorname{Pro}_{\mathcal{L}_{2}} \vec{x}=3 \vec{u}_{2}$, where $\mathcal{L}_{2}=\operatorname{span}\left\{\vec{u}_{2}\right\}$.

Midterm 3 Make-up. Your initials: \qquad
6. (6 points) Show work on this page with work under the problem, and your answer in the box. Let $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$.
(i) List the eigenvalues of A.
(ii) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If this is not possible, write NP.

$$
P=[\square]
$$

Midterm 3 Make-up. Your initials:
7. (6 points) Show work on this page with work under the problem, and your answer in the box. Find an orthogonal basis of the subspace spanned by the set of vectors shown below.

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right]\right\}
$$

Note: In order to receive full credit you must clearly show all steps of the Gram-Schmidt process applied to the vectors.

Midterm 3 Make-up. Your initials: \qquad
8. (8 points) Show work on this page with work under the problem, and your answer in the box.

In this problem, you will use the least-squares method to find the values α and β which best fit the curve

$$
y=\alpha \cdot 2^{-x^{2}}+\beta x
$$

to the data points $(-1,2),(0,0),(1,1)$ using the parameters α and β.
(i) What is the augmented matrix for the linear system of equations associated to this least squares problem?

(ii) What is the augmented matrix for the normal equations for this system.

(iii) Find a least-squares solution to the linear system from (i) to determine the parameters α and β of the best fitting curve.

