Homework 8 Solution

Math 461: Probability Theory, Spring 2022
Daesung Kim
Due date: Apr 1, 2022

1. (a) Let X be the Gamma random variable with $\lambda>0$ and $\alpha>0$. Show that $\operatorname{Var}(X)=\frac{\alpha}{\lambda^{2}}$.
(b) Let Y be the exponential random variable with parameter $\lambda>0$. Show that

$$
\mathbb{E} Y^{k}=\frac{k!}{\lambda^{k}} \quad k=1,2, \cdots
$$

Solution:

(a) It follows from $\mathbb{E}\left[X^{2}\right]=\Gamma(\alpha+2) /\left(\lambda^{2} \Gamma(\alpha)\right)$ and $\mathbb{E}[X]=\Gamma(\alpha+1) /(\lambda \Gamma(\alpha))$
(b) Since the density of Y is $\lambda e^{-\lambda x}$ on $(0, \infty)$ and otherwise 0 , it follows from the change of variables $y=\lambda x$,

$$
\mathbb{E}\left[Y^{k}\right]=\int_{0}^{\infty} x^{k} \lambda e^{-\lambda x} d x=\lambda^{-k} \int_{0}^{\infty} y^{k} e^{-y} d y=\frac{\Gamma(k+1)}{\lambda^{k}}=\frac{k!}{\lambda^{k}}
$$

2. Suppose that 3 balls are chosen without replacement from an urn consisting of 5 white and 8 red balls. Let X_{i} equal 1 if the i-th ball selected is white, and let it equal 0 otherwise. Give the joint probability mass function of
(a) X_{1}, X_{2};
(b) X_{1}, X_{2}, X_{3}.

Solution: (a)

$\mathbb{P}\left(X_{1}=i, X_{2}=j\right)$	$j=0$	$j=1$	$\mathbb{P}\left(X_{1}=i\right)$
$i=0$	$\frac{8}{13} \frac{7}{12}=\frac{14}{39}$	$\frac{8}{13} \frac{5}{12}=\frac{10}{39}$	$\frac{24}{39}$
$i=1$	$\frac{5}{13} \frac{8}{12}=\frac{10}{39}$	$\frac{5}{13} \frac{4}{12}=\frac{5}{39}$	$\frac{15}{39}$
$\mathbb{P}\left(X_{2}=j\right)$	$\frac{24}{39}$	$\frac{15}{39}$	1

(b)

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=0, X_{2}=0, X_{3}=0\right)=\frac{8}{13} \frac{7}{12} \frac{6}{11}=\frac{28}{143} \\
& \mathbb{P}\left(X_{1}=0, X_{2}=0, X_{3}=1\right)=\frac{8}{13} \frac{7}{12} \frac{5}{11}=\frac{70}{429} \\
& \mathbb{P}\left(X_{1}=0, X_{2}=1, X_{3}=0\right)=\frac{8}{13} \frac{5}{12} \frac{7}{11}=\frac{70}{429} \\
& \mathbb{P}\left(X_{1}=1, X_{2}=0, X_{3}=0\right)=\frac{5}{13} \frac{8}{12} \frac{7}{11}=\frac{70}{429} \\
& \mathbb{P}\left(X_{1}=0, X_{2}=1, X_{3}=1\right)=\frac{8}{13} \frac{5}{12} \frac{4}{11}=\frac{40}{429} \\
& \mathbb{P}\left(X_{1}=1, X_{2}=0, X_{3}=1\right)=\frac{5}{13} \frac{8}{12} \frac{4}{11}=\frac{40}{429} \\
& \mathbb{P}\left(X_{1}=1, X_{2}=1, X_{3}=0\right)=\frac{5}{13} \frac{4}{12} \frac{8}{11}=\frac{40}{429} \\
& \mathbb{P}\left(X_{1}=1, X_{2}=1, X_{3}=1\right)=\frac{5}{13} \frac{4}{12} \frac{3}{11}=\frac{5}{143}
\end{aligned}
$$

3. Consider a sequence of independent Bernoulli trials, each of which is a success with probability p. Let X_{1} be the number of failures preceding the first success, and let X_{2} be the number of failures between the first two successes. Find the joint mass function of X_{1} and X_{2}.

Solution: If $X_{1}=i$ and $X_{2}=j$, then the first i trials are failures, the $(i+1)$-th trial is success, and the next j trials are again failures, and the last $(i+j+2)$-th trial is success. Thus, we have $\mathbb{P}\left(X_{1}=i, X_{2}=j\right)=p^{2}(1-p)^{i+j}$.
4. The joint probability density function of X and Y is given by

$$
f(x, y)=\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right), 0<x<1,0<y<2
$$

and 0 otherwise.
(a) Verify that this is indeed a joint density function.
(b) Compute the density function of X.
(c) Find $\mathbb{P}(X>Y)$.
(d) Find $\mathbb{P}(Y>1 \mid X<1 / 2)$.
(e) Find $\mathbb{E} X$.
(f) Find $\mathbb{E} Y$.

Solution:

(a)

$$
\int_{0}^{1} \int_{0}^{2}\left(x^{2}+\frac{x y}{2}\right) d y d x=\int_{0}^{1}\left(2 x^{2}+x\right) d x=\frac{7}{6}
$$

(b)

$$
f_{X}(x)=\frac{6}{7}\left(2 x^{2}+x\right) \quad \text { for } 0<x<1
$$

(c)

$$
\mathbb{P}(X>Y)=\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x=\frac{15}{56}
$$

(d)

$$
\mathbb{P}\left(Y>1 \left\lvert\, X<\frac{1}{2}\right.\right)=\frac{\mathbb{P}\left(X<\frac{1}{2}, Y>1\right)}{\mathbb{P}\left(X<\frac{1}{2}\right)}=\frac{\int_{1}^{2} \int_{0}^{\frac{1}{2}} f(x, y) d x d y}{\int_{0}^{\frac{1}{2}} f_{X}(x) d x}=0.65 .
$$

(e)

$$
\mathbb{E} X=\int_{0}^{1} x f_{X}(x) d x=\frac{5}{7}
$$

(f)

$$
\mathbb{E} Y=\int_{0}^{2} y \int_{0}^{1} f(x, y) d x d y=\frac{8}{7}
$$

5. Let X, Y be jointly distributed with density function $f(x, y)=e^{-(x+y)}$ for $0 \leqslant x<\infty, 0 \leqslant y<\infty$. Find (a) $\mathbb{P}(X<Y)$ and (b) $\mathbb{P}(X<a)$ for $a \in \mathbb{R}$.

Solution:

(a) Since $\mathbb{P}(X<Y)=\mathbb{P}(X \geqslant Y)$, we have $\mathbb{P}(X<Y)=\frac{1}{2}$.
(b) If $a<0$, then $\mathbb{P}(X<a)=0$. Let $a \geqslant 0$, then

$$
\mathbb{P}(X<a)=\int_{0}^{a} \int_{0}^{\infty} e^{-(x+y)} d y d x=1-e^{-a} .
$$

6. A man and a woman agree to meet at a certain location about 12:30PM. If the man arrives at a time uniformly distributed between 12:15 and 12:45, and if the woman independently arrives at a time uniformly distributed between 12:00 and 1PM, find the probability that the first to arrive waits no longer than 5 minutes. What is the probability that the man arrives first?

Solution: Let X be uniform on $(-15,15)$, and let Y be uniform on $(-30,30)$. Nobody waits longer than five minutes if $|Y-X|<5$.

$$
\begin{aligned}
\mathbb{P}(|Y-X|<5)=\mathbb{P}(-5<Y-X<5) & =\mathbb{P}(X-5<Y<X+5) \\
& =\int_{-15}^{15} \int_{x-5}^{x+5} \frac{1}{30 \cdot 60} d y d x=\frac{30 \cdot 10}{30 \cdot 60}=\frac{1}{6} .
\end{aligned}
$$

The probability that the man arrives first is $\mathbb{P}(X<Y)=\frac{1}{2}$ by symmetry.
7. The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}x e^{-(x+y)}, & x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Determine whether X and Y are independent.

Solution: Since $f(x, y)=f_{X}(x) f_{Y}(y)$, where $f_{X}(x)=x e^{-x}$ for $x>0$, and $f_{Y}(y)=e^{-y}$ for $y>0$ (0 otherwise), so that X and Y are independent.
8. The joint density function of X and Y is $f(x, y)= \begin{cases}x+y & \text { if } 0<x<1,0<y<1, \\ 0 & \text { otherwise } .\end{cases}$
(a) Are X and Y independent?
(b) Find the density function of X.
(c) Find $\mathbb{P}(X+Y<1)$.
(d) Find $\mathbb{E} X$.
(e) Find $\operatorname{Var}(X)$.

Solution: Let X and Y be jointly continuous with density function

$$
f(x, y)= \begin{cases}x+y & \text { if } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) X and Y are not independent, since $f(x, y)$ is clearly not a product of functions of x and y.
(b) $f_{X}(x)=\int_{0}^{1}(x+y) d y=\left.\left(x y+\frac{y^{2}}{2}\right)\right|_{0} ^{1}=x+\frac{1}{2}$ for $0<x<1$.
(c) $\mathbb{P}(X+Y<1)=\int_{0}^{1} \int_{0}^{1-y}(x+y) d x d y=\int_{0}^{1}\left(\frac{(1-y)^{2}}{2}+y(1-y)\right) d y=\frac{1}{2} \int_{0}^{1}\left(1-y^{2}\right) d y=\frac{1}{2}\left(1-\frac{1}{3}\right)=\frac{1}{3}$.
(d) $\mathbb{E} X=\int_{0}^{1} x f_{X}(x) d x=\int_{0}^{1} x\left(x+\frac{1}{2}\right) d x=\left.\left(x^{3} / 3+x^{2} / 4\right)\right|_{0} ^{1}=7 / 12$.
(e) $\mathbb{E} X^{2}=\int_{0}^{1} x^{2}\left(x+\frac{1}{2}\right) d x=5 / 12$ and $\operatorname{Var}(X)=5 / 12-(7 / 12)^{2}=11 / 144$.
9. Let X and Y be jointly distributed with density function

$$
f(x, y)= \begin{cases}12 x y(1-x), & 0<x<1,0<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent?
(b) Find $\mathbb{E} X$.
(c) Find $\mathbb{E} Y$.
(d) Find $\operatorname{Var}(X)$.
(e) Find $\operatorname{Var}(Y)$.

Solution: First, compute $f_{X}(x)=\int_{0}^{1} 12 x y(1-x) d y=6 x(1-x)$ and $f_{Y}(y)=\int_{0}^{1} 12 x y(1-x) d y=2 y$.
(a) Clearly, $f(x, y)=f_{X}(x) f_{Y}(y)$, so that X and Y are independent.
(b) $\mathbb{E} X=\int_{0}^{1} 6 x^{2}(1-x) d x=2 x^{3}-\left.\frac{3}{2} x^{4}\right|_{0} ^{1}=\frac{1}{2}$.
(c) $\mathbb{E} Y=\int_{0}^{1} 2 y^{2} d y=\left.\frac{2}{3} y^{3}\right|_{0} ^{1}=\frac{2}{3}$.
(d) First, find $\mathbb{E} X^{2}=\int_{0}^{1} 6 x^{3}(1-x) d x=\frac{3}{2} x^{4}-\left.\frac{6}{5} x^{5}\right|_{0} ^{1}=\frac{3}{10}$. Now, $\operatorname{Var}(X)=\mathbb{E} X^{2}-E X^{2}=\frac{3}{10}-\frac{1}{4}=\frac{1}{20}$.
(e) First, find $\mathbb{E} Y^{2}=\int_{0}^{1} 2 y^{3} d y=\left.\frac{1}{2} y^{4}\right|_{0} ^{1}=\frac{1}{2}$. Now, $\operatorname{Var}(X)=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}$.
10. If X_{1} and X_{2} are independent exponential random variables with respective parameters λ_{1} and λ_{2}, find the distribution of $Z=X_{1} / X_{2}$. Also compute $\mathbb{P}\left(X_{1}<X_{2}\right)$.

Solution: Let X_{1}, X_{2} be exponential random variables with parameter λ_{1}, λ_{2}. Let $Z=X_{1} / X_{2}$. Note
that $F_{Z}(a)=0$ if $a \leqslant 0$. Compute $F_{Z}(a)$ for $a>0$:

$$
\begin{aligned}
F_{Z}(a)=\mathbb{P}(Z \leqslant a)=\mathbb{P}\left(X_{1} \leqslant a X_{2}\right) & =\lambda_{1} \lambda_{2} \int_{0}^{\infty} \int_{0}^{a y} e^{-\lambda_{1} x-\lambda_{2} y} d x d y \\
& =\lambda_{2} \int_{0}^{\infty} e^{-\lambda_{2} y}\left(1-e^{-\lambda_{1} a y}\right) d y \\
& =1-\frac{\lambda_{2}}{\lambda_{1} a+\lambda_{2}}
\end{aligned}
$$

so that

$$
f_{Z}(a)=\frac{d}{d a} F(a)=\frac{\lambda_{1} \lambda_{2}}{\left(a \lambda_{1}+\lambda_{2}\right)^{2}}
$$

Finally, we have

$$
\mathbb{P}\left(X_{1}<X_{2}\right)=\mathbb{P}(Z<1)=F_{Z}(1)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

