Practice for Exam 2: Solution

MATH 3215, Summer 2023

- 1. Let X and Y be two discrete random variables with joint pmf $p_{X,Y}(1,1) = p_{X,Y}(1,2) = \frac{1}{3}$, $p_{X,Y}(2,1) = p_{X,Y}(2,2) = \frac{1}{6}$. Find Cov(X,Y) and ρ . Are they independent? ANS: $Cov(X,Y) = 0 = \rho$ and they are independent.
- 2. Let *X* and *Y* be two discrete random variables with joint pmf $p_{X,Y}(x,y) = \frac{x+y}{27}$, where x = 2,3 and y = 1,2,3. Find the marginal pmfs of *X*. Find the conditional expectation of *X* given Y = 2.

ANS: $p_X(x) = \frac{x+2}{9}$, $p_Y(y) = \frac{2y+5}{27}$, and $\mathbb{E}[X|Y=2] = \frac{23}{9}$.

- 3. Let *X* and *Y* be two random variables with joint pdf $f_{X,Y}(x,y) = 2e^{-x-y}$ for $0 \le x \le y < \infty$. Find the marginal pdfs of *X* and *Y*. Are they independent? ANS: $f_X(x) = 2e^{-2x}$ and $f_Y(y) = 2e^{-y}(1 e^{-y})$. They are dependent.
- 4. (There were typos in the problem. Corrected.) Let X and Y be two random variables with joint pdf $f_{X,Y}(x,y) = \frac{1}{2}$ for 0 < x + y < 2, x > 0, y > 0. Find the conditional expectation $\mathbb{E}[X|Y]$.

 ANS: $\mathbb{E}[X|Y] = 1 \frac{Y}{2}$.

5. Let *X* be a uniform random variable on (-1,3) and $Y = X^2$. Find the pdf of *Y*. ANS:

$$f_Y(y) = \begin{cases} \frac{1}{4\sqrt{y}}, & 0 \le y < 1, \\ \frac{1}{8\sqrt{y}}, & 1 \le y < 9, \\ 0, & \text{otherwise.} \end{cases}$$

6. Let *X* be a random variable with pdf given by

$$f_X(x) = x^2 + \frac{10x^4}{3}$$

for 0 < x < 1, and otherwise $f_X(x) = 0$. Find the cdf and the pdf of $Y = \log X$. ANS:

$$F_Y(y) = \begin{cases} \frac{1}{3}(e^{3y} + 2e^{5y}), & y < 0, \\ 1, & y \ge 0, \end{cases}$$

and $f_Y(y) = e^{3y} + \frac{10}{3}e^{5y}$ for y < 0 and otherwise 0.

7. Let X be an exponential random variable with parameter 1, i.e., its pdf is given by $f_X(x) = e^{-x}$, x > 0. Find the pdf of $Y = X^4$. Are X and $Y^{\frac{1}{2}}$ negatively correlated? ANS: $f_Y(y) = \frac{1}{4}y^{-\frac{3}{4}}e^{-t^{\frac{1}{4}}}$ for $y \ge 0$ and otherwise 0. $Cov(X,Y^{1/2}) = \mathbb{E}[X^3] - \mathbb{E}[X]\mathbb{E}[X^2] = 6 - 2 = 4 > 0$.

1

8. The lifetime in hours of an electronic tube is a random variable having a probability density function given by

$$f(x) = xe^{-x}$$

for $0 \le x < \infty$. Find the expected lifetime of such a tube. ANS: $\mathbb{E}[X] = 2$.

9. Let (X,Y) be a bivariate normal random vector. Both X and Y have mean 1 and variance 4, while the correlation coefficient of X and Y is $\rho = \frac{1}{4}$. Find Var(-2X+Y). Assume now that (X,Y) is a bivariate normal vector, with X and Y having mean 9 and variance 9, but that the correlation coefficient has changed and is now given by $\rho = 0$. Find $\mathbb{P}(3 \le X \le 15, Y \le 9)$ and using the tables, find an approximate value for it.

ANS:
$$Var(-2X + Y) = 4Var(X) + Var(Y) - 4Cov(X, Y) = 16$$
. $\mathbb{P}(3 \le X \le 15, Y \le 9) = \mathbb{P}(Z \le 2) - \frac{1}{2} \approx 0.4772$.

- 10. The life of a certain type of automobile tire is normally distributed with mean 34,000 miles and standard deviation 4000 miles.
 - (a) What is the probability that such a tire lasts more than 40,000 miles?
 - (b) What is the probability that it lasts between 30,000 and 35,000 miles?
 - (c) Given that it has survived 30,000 miles, what is the conditional probability that the tire survives another 10,000 miles?

ANS: (a)
$$\mathbb{P}(Z \ge 1.5) \approx 0.0668$$

(b) $\mathbb{P}(-1 \le Z \le 0.25) \approx 0.44$
(c) $\mathbb{P}(Z \ge 1.5)/\mathbb{P}(Z \ge -1) \approx 0.0794$

11. Let *X* be a random variable with density

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

Find the density of 1/X.

ANS: $f_X = f_{1/X}$.