Chapter 5. Distributions of Functions of Random Variables

Math 3215 Summer 2023

Georgia Institute of Technology

Section 1.

Functions of One Random Variable

Functions of One Random Variable

Let X be a random variable.
Define $Y=u(X)$ for some function u.
We discuss how to find the distribution of Y from that of X.

$$
\text { look at } C D F
$$

Functions of One Random Variable

pms of $x=f_{x}(x)=$

$$
\left\{\begin{array}{l}
\frac{1}{8} \\
0
\end{array}\right.
$$

$$
\begin{aligned}
& x=-2,-1,0,1,2,3,4,5 \\
& 0, w . \quad \& \quad
\end{aligned}
$$

Example
Let X have a discrete uniform distribution on the integers from -2 to 5 .
Find the distribution of $Y=X^{2} . \geqslant 0$

$$
\mathbb{P}(\underline{\underline{Y}} \leqslant t)=\mathbb{P}\left(\underline{X^{2} \leqslant t}\right)=\mathbb{P}(-\sqrt{t} \leqslant x \leqslant \sqrt{t})
$$

$0 \leqslant t<1$
$1 \leqslant \sqrt{t}<2 \rightarrow 1 \leqslant t<4$
$2 \leqslant \sqrt{t}<3 \rightarrow 4 \leqslant t<9$
$3 \leqslant \sqrt{t}<4 \rightarrow 9 \leqslant t<16$

$4 \leqslant \sqrt{t}<5 \rightarrow 16 \leqslant t<25$
$5 \leqslant \sqrt{t} \quad \longrightarrow \quad+\geqslant 25$

$$
\begin{array}{r}
\mathbb{P}(\underline{\underline{Y}}=\underline{k})=\mathbb{P}(X=\sqrt{k} o r-\sqrt{k}) \\
k=1,4,9,162,5 \\
0
\end{array}
$$

$$
\begin{aligned}
& f_{Y}(16)=f_{Y}(9)=f_{Y}(0)=\frac{1}{8}, \quad f_{Y}(1)=\frac{2}{8}=f_{Y}(9) \\
& f_{Y}^{\prime \prime}(25)
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{X \sim \operatorname{Unif}(-1.3)}{\mathbb{P}(Y \leqslant t)} & Y=x^{2} \geqslant 0 \\
& \text { if } \quad t<0
\end{array}
$$

If $0<t<1$

If $\quad\left(<\sqrt{t}<3, \quad \mathbb{P}(Y \leqslant t)=\frac{1}{4}+\frac{1}{4} \sqrt{t}\right.$
If $\sqrt{t} \geqslant 3 \quad P(Y \leqslant t)=1$

${ }_{Y}(t)$

$$
f_{Y}(t)=\frac{d}{d t} F_{Y}(t)=\left\{\begin{array}{cl}
0 & t \leqslant 0 \text { or } t \geqslant 9 \\
\frac{1}{4 \sqrt{t}} & 0<t<1 \\
\frac{1}{8 \sqrt{t}} & 1 \leqslant t \leqslant 9
\end{array}\right.
$$

CDF Technique

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \quad \begin{aligned}
& \Gamma(n)=(n-1)! \\
& \Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1)
\end{aligned}
$$

Example
Let X have a gamma distribution with pdf

$$
f_{x}(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\theta}}
$$

Find the distribution of $Y=e^{X}$.

$$
\begin{aligned}
& F_{Y}(t)=\mathbb{P}(Y \leqslant t)=\mathbb{P}\left(e^{X} \leqslant t\right)=\underbrace{\mathbb{P}(X \leqslant \log t)}=F_{X}(\log t) \\
& f_{Y}(t)=\frac{d}{d t} F_{Y}(t)=\frac{d}{d t}\left(F_{X}(\log t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f_{x}(\log t)-\frac{1}{t} \\
& =\frac{1}{\Gamma(\alpha) \theta^{\alpha}}(\log t)^{\alpha-1} \cdot e^{-\frac{1}{\theta} \log t} \cdot \frac{1}{t} \\
& =\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \cdot(\log t)^{\alpha-1} \cdot t^{-\frac{1}{\theta}-1}
\end{aligned}
$$

CDF Technique
CDF : (1) non-decreasits
(2) $\lim _{x \rightarrow-\infty} F(x)=0$
(3) $\lim _{x \rightarrow \infty} F(x)=1$

Theorem
Let X be a random variable with pdf F_{x}
Suppose F is strictly increasing, $F(a)=0, F(b)=1$.
Let $Y \sim U(0,1)$.
Then, $X=F^{-1}(Y)$.
proof
Let $Z=F^{-1}(Y)$

$$
F_{Z}(t)=\mathbb{P}(\underline{\mathbb{Z}} \leqslant t)
$$

$$
\begin{aligned}
& F\left(F^{-1}(t)\right)=t, 0 \leqslant t \leqslant 1 \\
& F^{-1}(F(\delta))=s, a<s<b
\end{aligned}
$$

$$
=\mathbb{P}\left(F_{x}^{-1}(Y) \leqslant t\right)
$$

$2 \because F$ is increasing

$$
=\mathbb{P}(\underbrace{\left.F_{X}\left(F_{x}^{-1}(Y)\right) \leqslant F_{X}(t)\right)}_{\mathbb{X}_{Y}}
$$

$$
\begin{aligned}
&=P\left(Y \leqslant F_{x}(t)\right. \\
&=[0,1] \\
& \sim U_{\text {in }}(0,1)
\end{aligned}
$$

$$
=F_{x}(t)
$$

$\Rightarrow \quad Z=X \quad$ in distribution

$$
F_{x}^{-1}(Y)
$$

Change of Variables

Example

Let X have the pdf $f(x)=3(1-x)^{2}$ for $0<x<1$.
Find the distribution of $Y=(1-X)^{3}$.

Let X have the pdf $f(x)=4 x^{3}, 0<x<1$.
Find the pdf of ${\underset{\sim}{Y}}^{Y}=\underline{x}^{(2)}>0 \quad+\geqslant 0$. otherwise $F_{Y}=0$.

$$
\begin{aligned}
& F_{Y}(t)=\mathbb{P}(Y \leqslant t)=\mathbb{P}\left(X^{2} \leqslant t\right) \\
& =\mathbb{P}(-\sqrt{t} \leqslant x \leqslant \sqrt{t}) \leftarrow \quad \frac{\sqrt{t}}{-\sqrt{t}} \\
& =\mathbb{P}(x \leqslant \sqrt{t})-\mathbb{P}(x<-\sqrt{t}) \\
& =\mathbb{P}(X \leqslant \sqrt{t})=F_{X}(\sqrt{t}) \\
& f_{Y}(t)=\frac{d}{d t} F_{Y}(t)=\frac{d}{d t} F_{X}(\sqrt{t}) \\
& =F_{x}^{\prime}(\sqrt{t}) \cdot(\sqrt{t})^{\prime} \\
& =\underbrace{f_{x}(\sqrt{t}) \cdot \frac{1}{2 \sqrt{t}} \underbrace{2}_{\left\{\begin{array}{c}
2 \\
2 t
\end{array} \quad 0<t<1\right.} \cdot(\sqrt{t})^{b^{2}} \cdot \frac{1}{\not x \sqrt{t}}=\underbrace{2 t}}_{2 t} \begin{array}{c}
t \\
0 \quad \text {-otherwise. }
\end{array} \\
& f_{Y}(t)=\left\{\begin{array}{cc}
2 t, & 0<t<1 \\
0, & 0 . \omega .
\end{array}\right.
\end{aligned}
$$

$Y=u(x), \quad u$ is strictly incteasing.

$$
\begin{aligned}
F_{Y}(t) & =\mathbb{P}(u(x) \leqslant t) \quad\left(v=u^{-1}\right) \\
& =\mathbb{P}(x \leqslant v(t)) \\
& =\underbrace{}_{X}(v(t)) \\
f_{Y}(t) & =f_{X}(v(t)) \cdot v^{\prime}(t)
\end{aligned}
$$

Section 2.
Transformations of Two Random Variables

Transformations of Two Random Variables

If X_{1} and X_{2} are two continuous-type random variables with joint pdf
${ }_{x_{1}} x_{2}\left(x_{1}, x_{2}\right)$.
Let $Y_{1}=u_{1}\left(X_{1}, X_{2}\right), Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$.
ex) $\left\{\begin{array}{l}Y_{1}=x_{1}+x_{2}=u_{1}\left(x_{1}, x_{2}\right) \\ Y_{2}=x_{1} \cdot x_{2}=u_{2}\left(x_{1}, x_{2}\right)\end{array}\right.$
If $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right), X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$, then the joint pdf of Y_{1} and Y_{2} is

$$
f_{Y_{1}, Y_{2}}=|J| f_{X_{1}, X_{2}}\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right)
$$

where J is the Jacobian given by

$$
J:=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|_{x} .
$$

r determinant.

Transformations of Two Random Variables

Example
Let X_{1} and X_{2} have the joint pdf

$$
f\left(x_{1}, x_{2}\right)=2, \quad 0<x_{1}<x_{2}<1
$$

Find the joint pdf of $Y_{1}=\frac{X_{1}}{X_{2}}$ and $Y_{2}=X_{2}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
Y_{1}=u_{1}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{x_{2}} \Rightarrow x_{1}=\underline{x_{2}} \cdot Y_{1}=Y_{1} \cdot Y_{2} \\
Y_{2}=u_{2}\left(x_{1}, x_{2}\right)=x_{2}
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
X_{1}=\underline{Y_{1} \cdot Y_{2}}=v_{1}\left(Y_{1}, Y_{2}\right) \\
X_{2}=\underline{Y_{2}}
\end{array}\right. \\
& |J|=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\partial x_{2} & \partial x_{2}
\end{array}\right|=\left|\quad y_{2} x^{y_{1}}\right|=\left|y_{2}\right| \\
& f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\underbrace{f_{x_{1}, x_{2}}\left(y_{1} \cdot y_{2}\right.}, y_{2}) \cdot\left|y_{2}\right|=\left\{\begin{array}{lc}
2 y_{2}, & 0<y_{1} y_{2}<y_{2}<1 \\
0, & 0, \omega .
\end{array}\right.
\end{aligned}
$$

Exercise

Let X_{1} and X_{2} be independent random variables, each with pdf

$$
f(x)=e^{-x}, \quad 0<x<\infty .
$$

Find the joint pdf of $Y_{1}=X_{1}-X_{2}$ and $Y_{2}=X_{1}+X_{2}$.

Section 3.

Several Independent Random Variables

Independent random variables

Recall that X_{1} and X_{2} are independent if

$$
\mathbb{P}\left(X_{1} \in A, X_{2} \in B\right)=\mathbb{P}\left(X_{1} \in A\right) \mathbb{P}\left(X_{2} \in B\right)
$$

for all A, B.
joint

In particular, if X_{1} and X_{2} have ${ }^{\top}$ pdfs, then $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$.

Independent random variables

Definition

In general, we say $X_{1}, X_{2}, \cdots, X_{n}$ are independent if $\left\{X_{1} \in A_{1}\right\},\left\{X_{2} \in A_{2}\right\}, \cdots,\left\{X_{n} \in A_{n}\right\}$ are mutually independent, for any choice of $A_{1}, A_{2}, \cdots, A_{n}$.

In particular, if $X_{1}, X_{2}, \cdots, X_{n}$ has pdfs, then the joint pdf is the product. of
marginals
If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the same distribution, we say they are i.i.d. or a random sample of size n from that common distribution. ${ }^{\text {P }}$
Independent, Identically distributed

For $\left\{x_{i_{1}} \in A_{i}\right\}, \cdots,\left\{x_{i_{k}} \in A_{i_{k}}\right\}$

$$
\mathbb{P}\left(X_{i,} \in A_{i}, \cdots, X_{i_{k}} \in A_{i_{c}}\right)=\mathbb{P}\left(X_{i_{1}} \in A_{i_{1}}\right) \cdots \mathbb{P}\left(X_{i_{k}} \in A_{i_{k}}\right)
$$

Independent random variables

$$
\begin{aligned}
Y \sim E_{x p}(\lambda) \quad & \underline{P(Y C=t)}= \\
& X_{1}, x_{2}, x_{3} \sim E_{x_{p}(1)} \quad \text { i.i.d. } .
\end{aligned}
$$

Let X_{1}, X_{2}, X_{3} be a'random sample from a distribution with pdf

$$
f(x)=e^{-x}, \quad \begin{gathered}
E x p \\
\operatorname{Exp}_{p}(1) \\
0<x<\infty .
\end{gathered}
$$

Find $\mathbb{P}\left(0<X_{1}<1,2<X_{2}<4,3<X_{3}<7\right)$.

$$
\begin{aligned}
& =\mathbb{P}\left(0<x_{1}<1\right) \cdot \mathbb{P}\left(2<x_{2}<4\right) \mathbb{P}\left(3<x_{3}<7\right) \\
& =\left(\mathbb{P}\left(x_{1}>0\right)-\mathbb{P}\left(x_{1} \geqslant 1\right)\right)\left(\mathbb{P}\left(x_{2}>2\right)-\mathbb{P}\left(x_{2} \geqslant 4\right)\right)\left(\mathbb{P}\left(x_{3}>3\right)-\mathbb{P}\left(x_{3} \geqslant 7\right)\right) \\
& =\left(1-e^{-1}\right)\left(e^{-2}-e^{-4}\right)\left(e^{-3}-e^{-7}\right) . \\
& =e^{-5} \cdot\left(1-e^{-1}\right)\left(1-e^{-2}\right)\left(1-e^{-4}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right] \\
\operatorname{Cor}(X, Y) & =\mathbb{E}[(\underline{X-\mathbb{E} X}) \cdot(\underline{Y-\mathbb{E}[Y]})) \\
& =\mathbb{E}[\overline{\bar{X} \cdot \bar{Y}]}
\end{aligned}
$$

Expectation and Variance
without indef.
Theorem
Let $X_{1}, X_{2}, \cdots, X_{n}$ be a sequence of random variables. Then,

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\underline{E} \mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

If they are independent, then

$$
\begin{aligned}
\operatorname{Var}\left[X_{1}+X_{2}+\cdots+X_{n}\right] & =\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\cdots+\operatorname{Var}\left[X_{n}\right] \\
\bar{X} & =X-\mathbb{E} X, \bar{Y}=Y-\mathbb{E} Y
\end{aligned}
$$

Note

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\operatorname{Var}(\bar{X}+\bar{Y}) \quad \mathbb{E} \bar{X}=\mathbb{E} \bar{Y}=0 \\
\mathbb{E}[(X+Y-\mathbb{E}[X+Y)] & =\mathbb{E}\left[(\bar{X}+\bar{Y})^{2}\right] \quad 0 \\
& =\mathbb{E}\left[\bar{X}^{2}+2 \bar{X} \cdot \bar{Y}+\bar{Y}^{2}\right] \\
& =\mathbb{E}\left[\bar{X}^{2}\right]+2 \mathbb{E}[\bar{X} \bar{Y}]+\mathbb{E}^{2}\left[\bar{Y}^{2}\right] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

Exercise

Let X_{1}, X_{2}, X_{3} be i.i.d. Geometric with $p=\frac{3}{4}$.
Let Y be the minimum of X_{1}, X_{2}, X_{3}.
Find $\mathbb{P}(Y>4)$.

Exercise 5.2 .6

$$
x_{1} \sim \operatorname{Gamma}(\alpha, \theta) \quad \text { Indep. }
$$

$$
X_{2} \sim \operatorname{Gamma}(\beta, \theta)
$$

$$
\begin{aligned}
& f_{x_{1}}\left(x_{1}\right)=\frac{1}{\theta^{\alpha} \Gamma(\alpha)} x_{1}^{\alpha-1} e^{-\frac{x_{1}}{\theta}}, x_{1}>0 \\
& f_{x_{2}}\left(x_{2}\right)=\frac{1}{\theta^{\beta} \Gamma(\beta)} x_{2}^{\beta-1} e^{-\frac{x_{2}}{\theta}} \quad \frac{x_{1}}{x_{1}+x_{2}}<1 \\
& \begin{array}{l}
W=\frac{x_{1}}{x_{1}+x_{2}} \\
F_{W}(\omega)=\mathbb{P}\left(\omega^{\omega} \leqslant \omega\right)=\mathbb{P}\left(\frac{x_{1}}{x_{1}+x_{2}} \leqslant \omega\right)
\end{array} \\
& =\mathbb{P}\left(x_{1} \leqslant \omega\left(\dot{x}_{1}+x_{2}\right)\right) \\
& =\mathbb{P}\left((1-\omega) x_{1} \leqslant \omega x_{2}\right)=\mathbb{P}\left(x_{1} \leqslant\left(\frac{w}{1-w}\right) x^{0} x_{2}\right) \\
& =\int_{0}^{\infty} \int_{0}^{\left.\frac{(\omega}{1-w}\right) x_{2}} f_{x_{1}}\left(x_{1}\right) f_{x_{2}}\left(x_{2}\right) d x_{1} d x_{2} \\
& x_{2}^{x_{2}} \quad x_{1}=\left(\frac{\omega}{1-\omega}\right) x_{2}=\int_{0}^{\infty}\left(\int_{0}^{\left(\frac{\omega}{1-\omega}\right) x_{2}} f_{x_{1}}\left(x_{1}\right) d x_{1}\right) \cdot f_{x_{2}}\left(x_{2}\right) d x_{2} \\
& =\int_{0}^{\infty} F_{x_{1}}\left(\left(\frac{\omega}{1-\omega}\right) x_{2}\right) \cdot f_{x_{2}}\left(x_{2}\right) d x_{2} \\
& f_{\omega}(\omega)=\int_{0}^{\infty} \frac{d}{d \omega} F_{x_{1}}\left(\left(\frac{\omega}{1-\omega}\right) x_{2}\right)-f_{x_{2}}\left(x_{2}\right) d x_{2} \\
& =\int_{0}^{\infty} f_{x_{1}}\left(\frac{w}{\underline{1-w} x_{2}}\right) \cdot \frac{x_{2}}{(1-w)^{2}} f_{x_{2}}\left(x_{2}\right) d x_{2} \\
& =\frac{1}{\underline{\theta}^{\alpha} \Gamma(\alpha)} \frac{1}{\underline{\theta^{\alpha}} \Gamma(\beta)} \int_{0}^{\infty}\left(\left(\frac{w}{1-\omega}\right) x_{2}\right)^{\alpha-1} e^{-\frac{\left(\frac{1}{1-w}\right) x_{2}}{\theta}} \cdot \frac{x_{2}}{(1-\omega)^{2}} x^{\beta-1} e^{-\frac{x_{2}}{\theta}} d x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\theta^{\alpha+\beta} \Gamma(\alpha) \Gamma(\beta)} \frac{w^{\alpha-1}}{(1-\omega)^{\alpha+1}} \int_{0}^{\infty} x_{2}^{\alpha+\beta-1} e^{-\frac{x_{2}}{\theta} \cdot\left(\frac{\omega^{\omega}}{1-\omega}+1\right)^{-\frac{1}{1-w}}} d x_{2} \\
& \begin{array}{l}
\int_{0}^{\infty} x_{2}^{(\alpha+\beta)-1} \cdot e^{-\frac{x_{2}}{\theta(1-\omega)}}{ }^{=t} d x_{2} \\
\int_{0}^{\infty}(\theta(1-\omega) t)^{\alpha+\beta-1} e^{-t} \stackrel{\theta}{=}(1-\omega) d t
\end{array} \\
& =\theta^{\alpha+\beta} \cdot(1-\omega)^{\alpha+\beta} \underbrace{\int_{0}^{\infty} t^{\alpha+\beta-1} e^{-t} d t}_{=\Gamma(\alpha+\beta)} \underbrace{=} \\
& =\frac{1}{\theta^{\alpha+\beta} \Gamma(\alpha) \Gamma(\beta)} \frac{\omega^{\alpha-1}}{(1-\omega)^{\alpha+1-\beta}}-\theta^{\alpha+\beta}(1 \omega)^{\alpha+\beta} \Gamma(\alpha+\beta) \\
& =\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \cdot \omega^{\alpha-1}(1-\omega)^{\beta-1} \quad \begin{array}{l}
\text { Beta dist. } \\
0<\omega<1
\end{array}\right. \\
& \int_{0}^{1} \omega^{\alpha-1}(1-\omega)^{p-1} d \omega=\frac{\rho(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}=B(\alpha, \beta)
\end{aligned}
$$

Beta function

Section 4.

The Moment-Generating Function Technique

Def $M_{x}(t)=\mathbb{E}\left[e^{t x}\right]$
Fact $X, Y, \quad M_{X}(t)=M_{Y}(t) \quad$ for $-\delta<t<\delta$
for some $\delta>0$

$$
\Rightarrow \quad F_{X}(t)=F_{Y}(t) \quad \forall t \in \mathbb{R}
$$

$\Rightarrow \quad X, Y$ have the same distribution

The Moment-Generating Function
i.i.d $=$ Independent and identically distributed

Theorem
If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the mgfs $M_{X_{i}}(t)$, then the mg of $Y=a_{1} X_{1}+\cdots a_{n} X_{n}$ is $M_{Y}(t)=M_{X_{1}}\left(a_{1} t\right) \cdots M_{X_{n}}\left(a_{n} t\right)$.

Theorem
If $X_{1}, X_{2}, \cdots, X_{n}$ are i.i.d., then the mgf of $Y=X_{1}+\cdots+X_{n}$ is $M_{Y}(t)=M_{X}(t)^{n}$. If $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then the mgf is $M_{\bar{X}}(t)=M_{X}\left(\frac{t}{n}\right)^{n}$.

Proof

$$
a_{1}=\cdots=q_{n} \stackrel{1}{n}
$$

$$
\begin{aligned}
M_{Y}(t) & =\mathbb{E}\left[e^{t Y}\right] \\
& =\mathbb{E}\left[e^{t\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)}\right] \\
& =\mathbb{E}\left[e^{\operatorname{ta} x_{1}+\operatorname{ta} a_{2} x_{2}+\cdots+\tan x_{n}}\right] \\
& =\mathbb{E}\left[e^{\left(t a_{1}\right) \cdot x_{1}} \cdots e^{\left(t a_{2}\right) x_{2}} \ldots e^{\left(t \cdot a_{n}\right) x_{n}}\right] \\
& \left.=\mathbb{E}\left[e^{\left(t a_{1} x_{1}\right.}\right] \cdots e^{(\tan) x_{n}}\right] \\
& =M_{x_{1}}\left(t a_{1}\right) \cdots M_{n}(\tan)
\end{aligned}
$$

Example
Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. Bernoulli with p.
Let $Y=X_{1}+\cdots+X_{n}$.
Find the mgf of Y.

$$
\begin{aligned}
& x \sim \operatorname{Bor}(p) \\
& M_{x}(t)=\mathbb{E}\left[e^{t x}\right]={\underset{x}{-t}}^{-t} e^{t x} \cdot p(x)=e^{t \cdot \theta} \cdot(1-p)+e^{t \cdot 1} \cdot p \\
&=(1-p)+p \cdot e^{t}
\end{aligned}
$$

(1)
(2) $\quad M_{Y}(t)=\left(M_{x}(t)\right)^{n}=\left((1-p)+p \cdot e^{t}\right)^{n}$
(3)

$$
\begin{aligned}
& W \sim \operatorname{Bin}(n, p) \\
& \begin{aligned}
& M_{w}(t)=\mathbb{E}\left[e^{t w}\right]=\sum_{x}^{-1} e^{t x}-p(x) \\
&=\sum_{x=0}^{n} e^{t x} \cdot\binom{n}{x} \cdot p^{x}(1-p)^{n-x} \\
&=\sum_{x=0}^{n}\binom{n}{x}\left(e^{t}-p\right)^{x}(1-p)^{n-x}=\left(e^{t} p+(1-p)\right)^{n} \\
& \operatorname{Bin}(n, p)
\end{aligned} \quad \text { Binomial }
\end{aligned}
$$

$Y \sim \operatorname{Bin}(n, p)$

The Moment-Generating Function

Example
Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. exponential with θ.
Let $Y=X_{1}+\cdots+X_{n}$.
Find the mgf of Y.
(1) $\quad X \sim \operatorname{Exp}$ with θ

$$
\begin{aligned}
M_{x}(t) & =\mathbb{E}\left[e^{t x}\right]=\int_{0}^{\infty} e^{t x} \frac{1}{\theta} e^{-\frac{x}{\theta}} d x \\
& =\frac{1}{\theta} \int_{0}^{\infty} e^{-\left(\frac{1}{\theta}-t\right) x} d x \quad \leftarrow \quad \frac{1}{\theta}-t>0 \\
& =\frac{1}{\theta} \cdot \frac{1}{\left(\frac{1}{\theta}-t\right)}=\frac{1}{1-\theta t}
\end{aligned}
$$

(2) $\quad M_{Y}(t)=\left(M_{x}(t)\right)^{n}=(1-\theta t)^{-n} \leftarrow$ Gamma

$$
M_{X}(t)=M_{Y}(t) \quad \text { for } \quad t \in(-\delta, \delta), \delta>0
$$

if and only if $x \stackrel{d}{=} Y \quad\left(F_{X}(t)=F_{Y}(t) \quad \forall_{t}\right)$

- $X_{1}, X_{2}, \cdots, X_{n}$ i.i.d $R V_{s}$ (random sample of size n)

$$
\begin{aligned}
& Y=x_{1}+x_{2}+\cdots+x_{n} \quad \Rightarrow \quad M_{Y}(t)=\mathbb{E}\left[e^{t Y_{]}}\right]=\left(M_{X}(t)\right)^{n} \\
& \bar{X}=\frac{1}{n}\left(x_{2}+\cdots+x_{n}\right) \quad \Rightarrow \quad M_{\bar{x}}(t)=\left(M_{x}\left(\frac{t}{n}\right)\right)^{n}
\end{aligned}
$$

sample mean
Exercise

$$
\begin{aligned}
X \sim P_{\text {Diss on }}(\lambda) & f_{x}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \quad k=0,1,2, \ldots \\
M_{x}(t) & =\mathbb{E}\left[e^{t x}\right]=\sum_{k_{k=0}^{\infty} e^{t k} \cdot e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{\sum_{k=0}^{\infty} \frac{\left(e^{t} \cdot \lambda\right)^{k^{k}}}{k!}}^{e^{e^{+} \lambda}}}=e^{-\lambda} \cdot e^{e^{t} \cdot \lambda}=e^{e^{\lambda} \lambda-\lambda}=e^{\left(e^{t}-1 \lambda \lambda\right.}
\end{aligned}
$$

Let X_{1}, X_{2}, X_{3} be independent Poisson with means 2, 1, 4 .
Find the mgf of $Y=X_{1}+X_{2}+X_{3}$.

$$
\begin{aligned}
& M_{Y}(t)=M_{X_{1}}(t) \cdot M_{X_{2}}(t) \cdot M_{X_{3}}(t) \\
& =e^{\left(e^{t}-1\right)-2} \cdot e^{\left(e^{t}-1\right) \cdot 1} \cdot e^{\left(e^{t}-1\right) \cdot 4} \\
& =e^{\left(e^{t}-1\right) \cdot(2+1+4)} \\
& \Rightarrow \quad Y \sim P_{o i s s o n}(7)
\end{aligned}
$$

Section 6.

The Central Limit Theorem

$$
\begin{aligned}
\mathbb{E}[\bar{x}] & =\mathbb{E}\left[\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)\right]=\frac{1}{n} \mathbb{E}\left[x_{1}+\cdots+x_{n}\right] \\
& =\frac{1}{n} \cdot\left(\mathbb{E} x_{1}+\mathbb{E} x_{2}+\cdots+\mathbb{E} x_{n}\right)=\frac{1}{x} \cdot n \cdot \mathbb{E}\left[x_{1}\right]=\mu \\
\operatorname{Var}(\bar{x}) & \left.=\operatorname{Var}\left(\frac{1}{n}\right)\left(x_{1}+\cdots+x_{n}\right)\right)=\frac{1}{n^{2}} \operatorname{Var}\left(x_{1}+\cdots+x_{n}\right) \\
& =\frac{1}{n^{2}} \cdot\left(\operatorname{Var}\left(x_{1}\right)+\cdots+\operatorname{Var}\left(x_{n}\right)\right)=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n} .
\end{aligned}
$$

The Central Limit Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then $\mathbb{E}[\bar{X}]=\mu$ and $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$.
Let $W=\frac{\bar{x}-\mu}{\sigma \sqrt{n}}$, then

$$
W=\frac{\bar{x}-\mathbb{E}[\bar{x}]}{\sqrt{\operatorname{Var}(\bar{x})}}=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / n}}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

$E[W]=O$
normalization

$$
\operatorname{Var}(W)=1
$$

$$
\mathbb{E}[w]=\mathbb{E}\left[\frac{1}{\sigma / \sqrt{n}}(\bar{x}-\mu)\right]=\frac{1}{\sigma / \sqrt{n}} \cdot(\mathbb{E}[\bar{x}]-\mu)=0
$$

$$
\operatorname{Var}(w)=\operatorname{Var}\left(\frac{1}{\sigma / \sqrt{n}}(\bar{x}-\mu)\right)=\frac{1}{\sigma^{2} / n} \cdot \underline{\operatorname{Var}(\bar{x}-\mu)=1}=\| \operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n} .
$$

$$
\begin{array}{lll}
x_{1}, x_{2}, x_{3}, \ldots & \mu<\infty, \sigma^{2}<\infty \\
\bar{x}_{n}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \\
W_{n}=W=\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}} & W_{n} \Rightarrow N(0,1) \text { in distribution } & \Rightarrow \text { as } n \rightarrow \infty
\end{array}
$$

The Central Limit Theorem
Gaussian universality
Normal Dist $=$ Gaussian
Theorem
If μ and σ^{2} are finite, then the distribution of W_{n} converges to that of the standard normal distribution as $n \rightarrow \infty$.

The convergence is in the following sense: If n is large, for the standard normal Z,

$$
\mathbb{P}(W \leq x) \approx \mathbb{P}(Z \leq x)=: \Phi(x)=\int_{\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{|y|^{2}}{2}} d y
$$

Idea

$$
w=\frac{\bar{x}-0}{1 / \sqrt{n}}
$$

$$
\mu=0, \quad \sigma^{2}=1 \quad \text { for simplicity } \quad=\sqrt{n} \cdot \bar{x}
$$

$$
M_{W}(t)=\left(M_{x}\left(\frac{t}{\sqrt{n}}\right)\right)^{n} \quad=\frac{x_{1}+\cdots x_{n}}{\sqrt{n}}
$$

D $M_{x}(0)=\mathbb{E}\left[e^{0 \cdot x}\right]=1$

$$
\begin{aligned}
& M_{x}^{\prime}(0)=0 \\
& M_{x}^{\prime \prime}(0)=\mathbb{E}\left[x^{2}\right]-\left(\mathbb{E}^{\prime \prime} x\right)^{2}=\sigma^{2}=1 \\
& M_{x}(t)=\underbrace{M_{x}(0)}+M_{x}^{\prime}(0) \cdot t+\frac{1}{2} M_{x}^{\prime \prime}(0) \cdot t^{2}+\cdots
\end{aligned}
$$

$$
\approx 1+\frac{1}{2} t^{2}
$$

(2)

$$
\begin{aligned}
& M_{w}(t) \approx\left(1+\frac{1}{2}-\left(\frac{t}{\sqrt{n}}\right)^{2}\right)^{n}=\left(1+\frac{t^{2}}{2 n}\right)^{n} \\
& e^{t^{2} / 2}=M_{z}(t) \\
& Z \sim N(0,1)
\end{aligned}
$$

The Central Limit Theorem

$$
(C L T)
$$

Example
Let \bar{X} be the mean of a random sample of $n=25$ currents (in milliamperes) in a strip of wire in which each measurement has a mean of 15 and a variance of 4 .

Find the approximate probability $\mathbb{P}(14.4<\bar{X}<15.6)$.

$$
\begin{aligned}
& W=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{x}-15}{2 / 5} \Rightarrow N(0,1) \\
& \mathbb{P}(14.4<\bar{x}<15.6) \\
= & \mathbb{P}\left(-\frac{3 / 5}{2 / 5}<\frac{\bar{x}-15}{2 / 5}<\frac{3 / 5}{2 / 5}\right) \\
= & \mathbb{P}\left(-\frac{3}{2}<\omega<\frac{3}{2}\right)=\mathbb{P}(W<1.5)-\mathbb{P}(W \leqslant-1.5) \\
\approx & \mathbb{P}(z<1.5)-\mathbb{P}(z<-1.5)=\Phi(1.5)-\underbrace{\Phi(-1.5)} \\
= & 2 \cdot \underline{\underline{\Phi}(1.5)}-1
\end{aligned}
$$

The Central Limit Theorem

Example

Let \bar{X} denote the mean of a random sample of size 25 from the distribution whosepdf is $f(x)=\frac{x^{3}}{4}, 0<x<2$.
Find the approximate probability $\mathbb{P}(1.5 \leq \bar{X} \leq 1.65)$.

$\mathbb{P}(1.5 \leqslant \bar{x} \leqslant 1.65)$

$$
\frac{\sqrt{\frac{8}{75}}}{\sqrt{25}}=\frac{2 \sqrt{2}}{\sqrt{3.5 .5}}
$$

$$
\mathbb{P}\left(\frac{2.5-5}{\sqrt{10 \cdot \frac{1}{2}-\frac{1}{2}}} \leqslant z \leqslant \frac{5.5-5}{\sqrt{10-\frac{5}{2} \cdot \frac{1}{2}}}\right) \approx \mathbb{P}(2.5<Y<5.5)=\mathbb{P}(Y=3,4,5)
$$

Example $\quad Y \sim \operatorname{Bin}\left(10, \frac{1}{2}\right) \quad \mathbb{P}(3 \leqslant Y<6) \approx$?
Approx.

In gerestal, $Y \sim \operatorname{Bin}(n, P) \quad n$ large.

$$
\begin{aligned}
& \left.Y=X_{1}+\cdots+X_{n}, \underline{X_{i}}\right\} \text { i.i.d. } \operatorname{Ber}(p) \\
& X=\frac{Y}{n}, \quad \mu=p, \quad \sigma^{2}=p(1-p) \\
& \mathbb{P}(W \leqslant x) \approx \mathbb{P}(z \leqslant x) \\
& W=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}=\frac{Y / n-p}{\sqrt{p(1-p)} / \sqrt{n}}=\frac{Y-n p}{\sqrt{n p(1-p)}} \\
& \Rightarrow \quad N(0,1) \\
& \mathbb{P}(Y \leqslant k) \\
& =\mathbb{P}\left(\frac{Y-n \rho}{\sqrt{n p(1-p)}} \leqslant \frac{k-n \rho}{\sqrt{n \rho(1-p)}}\right) \approx \mathbb{P}\left(z \leqslant \frac{k-n \rho}{\sqrt{n \rho(1-\rho)}}\right) \\
& Y \sim \operatorname{Bin}\left(100, \frac{1}{2}\right) \\
& \mathbb{P}(Y=53)=\mathbb{P}\left({ }_{5}=\frac{Y-50}{\sqrt{100 \cdot \frac{1}{2} \cdot \frac{1}{2}}}=\frac{5-50}{5}\right) \\
& \approx P\left(Z=\frac{3}{5}\right)=0 \\
& \mathbb{P}(\underline{Y}=53)=\mathbb{P}(\underline{(52.5 \leqslant Y<53.5) \quad \& \text { half unit }} \\
& \approx \mathbb{P}\left(\frac{52.5-50}{5}<z<\frac{53-50}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Y \sim P_{\text {oisson }}(100) \quad Y=X_{1}+\cdots+X_{100}, \\
& W=\frac{\bar{X}-1}{1 / \sqrt{100}}=\sqrt{100}\left(\frac{Y}{100}-1\right)=\frac{Y-100}{\sqrt{100}}=\frac{Y-100}{10} \\
& \Rightarrow N(0,1)
\end{aligned}
$$

$$
\underline{\underline{w}}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

CIT \Leftrightarrow Typical Huctuation

Is \bar{x} close μ ?
The typical behavior of \bar{x} is μ ?
: Law of Large Numbers.

Exercise

Let X equal the maximal oxygen intake of a human on a treadmill, where the measurements are in milliliters of oxygen per minute per kilogram of weight.

Assume that, for a particular population, the mean of X is $\mu=54.030$ and the standard deviation is $\sigma=5.8$.

Let \bar{X} be the sample mean of a random sample of size $n=47$.
Find $P(52.761 \leq \bar{X} \leq 54.453)$, approximately.

Section 8.
Chebyshev's Inequality and
Convergence in Probability

Simple carol $\quad X$: a RV $\quad x \geqslant 0 \quad x \geqslant k$

$$
\begin{aligned}
& \mathbb{P}(x \geqslant k)=\sum_{x: x \geqslant k} 11 f_{x}(x) \quad \frac{x}{k} \geqslant 1 \\
& \leqslant \sum_{x: x \geqslant k} x_{k}^{x} f_{x}(x)=\frac{1}{k} \sum_{x: x \geqslant k} x \cdot f_{x}(x) \\
& \leqslant \frac{1}{k} \sum_{x} x-f_{x}(x)=\frac{E x}{k} \\
& \| \mathbb{E}[x]
\end{aligned}
$$

Chebyshev's Inequality
Replace x with $|x-\mu|^{2}$
Theorem
If the random variable X has a mean μ and variance σ^{2}, then for every $k \geq 1$,

$$
\mathbb{P}(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}}
$$

In particular $\varepsilon=k \sigma$, then

$$
\mathbb{P}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

$$
\begin{aligned}
& \mathbb{P}(|x-\mu| \geqslant \varepsilon)=\mathbb{P}\left(|x-\mu|^{2} \geqslant \varepsilon^{2}\right)
\end{aligned}
$$

Suppose X is a nonnegative $R V, \mathbb{P}(x \geqslant 0)=1$.
For any $k>0$,

$$
\mathbb{P}(x \geqslant k) \leqslant \frac{\mathbb{E}[x]}{k}
$$

Chebysher's inequality.
Application
X : any RV with finite variance.

$$
\begin{aligned}
& \mathbb{E}[x]=\mu \quad, \quad \operatorname{Var}(x)=\sigma^{2}<\infty \text {. } \\
& Y=|X-\mu| \geqslant 0 \\
& \mathbb{P}(|x-\mu| \geqslant k)=\mathbb{P}(Y \geqslant k)=\mathbb{P}\left(Y^{2} \geqslant k^{2}\right) \\
& =\mathbb{P}\left(|x-\mu|^{2} \geqslant k^{2}\right) \leqslant \frac{\mathbb{E}\left[|x-\mu|^{2}\right]}{k^{2}} \\
& \text { Tail Probability }=\frac{\operatorname{Var}(x)}{k^{2}}=\frac{\sigma^{2}}{k^{2}} \\
& \mathbb{P}(|x-\mu| \geqslant k) \leqslant \frac{\sigma^{2}}{k^{2}}
\end{aligned}
$$

Chebyshev's Inequality

Example

Suppose X has a mean of 25 and a variance of 16 .
Find the lower bound of $\mathbb{P}(17<X<33)$.

$$
\begin{aligned}
\mathbb{P}(1\rangle<x<33) & =\mathbb{P}(|x-\mu|<8) \\
& =1-\mathbb{P}(|x-\mu| \geqslant \underline{8}) \\
& \geqslant 1-\frac{\operatorname{Var}(x)}{8^{2}}=1-\frac{16}{64}=\frac{3}{4} .
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}, x_{2}, \cdots, x_{n} \text { ind. with } \mathbb{E}\left[x_{1}\right]=\mu<\infty, \operatorname{Var}\left(x_{1}\right)=\sigma^{2}<\infty \\
& \bar{X}=\frac{1}{n}\left(x_{1}+\cdots f x_{n}\right) \text { : Sample mean } \\
& \mathbb{E}[\bar{x}]=\mu \\
& \operatorname{Var}(\bar{x})=\frac{1}{n} \cdot \sigma^{2} \\
& \\
& \mathbb{P}(|\bar{x}-\mu| \geqslant k) \leqslant \frac{\operatorname{Var}(\bar{x})}{k^{2}}=\frac{\sigma^{2}}{n \cdot k^{2}} \\
& \quad \forall a l l k>0
\end{aligned}
$$

The Law of Large Numbers

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\bar{x}_{n}-\mu\right| \geqslant k\right)=0 \quad \forall k>0 .
$$

" \bar{x} converges to μ Law of Large Numbers as $n \rightarrow \infty$ " in probability
Definition
We say a sequence of random variables X_{n} converges to a random variable X in probability if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=0
$$

Recall $(C C T)$.

$$
\begin{array}{r}
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { converges to } N(0,1) \text { as } \\
n \rightarrow \infty
\end{array}
$$

In distribution
That is

$$
\mathbb{P}(\bar{x}-\mu) \rightarrow \mathbb{P}(z \leqslant x)
$$

The Law of Large Numbers

Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Then, \bar{X} converges to μ in probability.

Exercise

If X is a random variable with mean 33and variance 16 , use Chebyshev's inequality to find

1. A lower bound for $\mathbb{P}(23<x<43)=\mathbb{P}\left(\left|x-\mu /\left.\right|^{33}\right|<10\right)=1-\mathbb{P}(|x-\mu| \geqslant 10)$
2. An upper bound for $\mathbb{P}(|X-| \geq 14)$.

$$
\geqslant 1-\frac{V_{a}(x)}{10^{2}}
$$

$=1-\frac{16}{100}=\frac{84}{100}$.

