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Section 1.

Functions of One Random Variable



Functions of One Random Variable

Let X be a random variable.

Define Y = u(X ) for some function u.

We discuss how to find the distribution of Y from that of X .



Functions of One Random Variable

Example

Let X have a discrete uniform distribution on the integers from −2 to 5.

Find the distribution of Y = X 2.



CDF Technique

Example

Let X have a gamma distribution with PDF

f (x) =
1

Γ(α)θα
xα−1e−

x
θ .

Find the distribution of Y = eX .



CDF Technique

Theorem

Let X be a random variable with CDF F .

Suppose F is strictly increasing, F (a) = 0, F (b) = 1.

Let Y ∼ U(0, 1).

Then, X = F−1(Y ).



Change of Variables

Example

Let X have the PDF f (x) = 3(1− x)2 for 0 < x < 1.

Find the distribution of Y = (1− X )3.



Exercise

Let X have the PDF f (x) = 4x3 for 0 < x < 1.

Find the PDF of Y = X 2.



Section 2.

Transformations of Two Random

Variables



Transformations of Two Random Variables

If X1 and X2 are two continuous-type random variables with joint PDF f (x1, x2).

Let Y1 = u1(X1,X2), Y2 = u2(X1,X2).

If X1 = v1(Y1,Y2), X2 = v2(Y1,Y2), then the joint PDF of Y1 and Y2 is

fY1,Y2 = |J|fX1,X2(v1(y1, y2), v2(y1, y2))

where J is the Jacobian given by

J :=

∣∣∣∣∣∂x1∂y1
∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣ .



Transformations of Two Random Variables

Example

Let X1 and X2 have the joint PDF

f (x1, x2) = 2, 0 < x1 < x2 < 1.

Find the joint PDF of Y1 =
X1

X2
and Y2 = X2.



Exercise

Let X1 and X2 be independent random variables, each with PDF

f (x) = e−x , 0 < x < ∞.

Find the joint pdf of Y1 = X1 − X2 and Y2 = X1 + X2.



Section 3.

Several Independent Random

Variables



Independent random variables

Recall that X1 and X2 are independent if

P(X1 ∈ A,X2 ∈ B) = P(X1 ∈ A)P(X2 ∈ B)

for all A,B.

In particular, if X1 and X2 have PDFs, then fX1,X2(x1, x2) = fX1(x1)fX2(x2).



Independent random variables

Definition

In general, we say X1,X2, · · · ,Xn are independent if

{X1 ∈ A1}, {X2 ∈ A2}, · · · , {Xn ∈ An} are mutually independent, for any choice of

A1,A2, · · · ,An.

In particular, if X1,X2, · · · ,Xn has PDFs, then the joint PDF is the product.

If X1,X2, · · · ,Xn are independent and have the same distribution,

we say they are i.i.d. (independent and identically distributed) or a random sample of

size n from that common distribution.



Independent random variables

Example

Let X1,X2,X3 be a random sample from a distribution with PDF

f (x) = e−x , 0 < x < ∞.

Find P(0 < X1 < 1, 2 < X2 < 4, 3 < X3 < 7).



Expectation and Variance

Theorem

Let X1,X2, · · · ,Xn be a sequence of random variables. Then,

E[X1 + X2 + · · ·+ Xn] = E[X1] + E[X2] + · · ·+ E[Xn].

If they are independent, then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn]

and

Var[X1 + X2 + · · ·+ Xn] = Var[X1] + Var[X2] + · · ·+ Var[Xn].



Exercise

Let X1,X2,X3 be i.i.d. Geometric with p = 3
4 .

Let Y be the minimum of X1,X2,X3.

Find P(Y > 4).



Section 4.

The Moment-Generating Function

Technique



The Moment-Generating Function

Theorem

If X1,X2, · · · ,Xn are independent and have the MGFs MXi
(t), then the MGF of

Y = a1X1 + · · · anXn is MY (t) = MX1(a1t) · · ·MXn(ant).

Theorem

If X1,X2, · · · ,Xn are i.i.d., then the MGF of Y = X1 + · · ·+ Xn is MY (t) = MX (t)
n.

If X = X1+···+Xn
n , then the MGF is MX (t) = MX (

t
n )

n.



The Moment-Generating Function

Example

Let X1,X2, · · · ,Xn be i.i.d. Bernoulli with p.

Let Y = X1 + · · ·+ Xn.

Find the MGF of Y .



The Moment-Generating Function

Example

Let X1,X2, · · · ,Xn be i.i.d. exponential with θ.

Let Y = X1 + · · ·+ Xn.

Find the MGF of Y .



Exercise

Let X1,X2,X3 be independent Poisson with means 2, 1, 4.

Find the MGF of Y = X1 + X2 + X3.



Section 6.

The Central Limit Theorem



The Central Limit Theorem

Let X1,X2, · · · ,Xn be i.i.d. with common distribution X .

Let E[X ] = µ and Var(X ) = σ2.

Let X = X1+···+Xn
n , then

E[X ] =

Var(X ) =

Let W =
X − µ

σ√
n

, then

E[W ] =

Var(W ) =



The Central Limit Theorem

Theorem

If µ and σ2 are finite, then the distribution of W =
X − µ

σ√
n

converges to that of the

standard normal distribution N(0, 1) as n → ∞.

The convergence is in the following sense: If n is large, for the standard normal Z ,

P(W ≤ x) ≈ P(Z ≤ x) =: Φ(x) =

∫ x

∞

1√
2π

e−
|y|2
2 dy .



The Central Limit Theorem

Example

Let X be the mean of a random sample of n = 25 currents (in milliamperes) in a

strip of wire in which each measurement has a mean of 15 and a variance of 4.

Find the approximate probability P(14.4 < X < 15.6).



The Central Limit Theorem

Example

Let X denote the mean of a random sample of size 25 from the distribution whose

PDF is f (x) = x3

4 , 0 < x < 2.

Find the approximate probability P(1.5 ≤ X ≤ 1.65).



Exercise

Let X equal the maximal oxygen intake of a human on a treadmill, where the

measurements are in milliliters of oxygen per minute per kilogram of weight.

Assume that, for a particular population, the mean of X is µ = 54.030 and the

standard deviation is σ = 5.8.

Let X be the sample mean of a random sample of size n = 47.

Find P(52.761 ≤ X ≤ 54.453), approximately.



Section 8.

Chebyshev’s Inequality and

Convergence in Probability



Chebyshev’s Inequality

Theorem

If the random variable X has a mean µ and variance σ2, then for every k ≥ 1,

P(|X − µ| ≥ ε) ≤ σ2

ε2
.

In particular ε = kσ, then

P(|X − µ| ≥ kσ) ≤ 1

k2
.



Chebyshev’s Inequality

Example

Suppose X has a mean of 25 and a variance of 16.

Find the lower bound of P(17 < X < 33).



The Law of Large Numbers

Definition

We say a sequence of random variables Xn converges to a random variable X in

probability if for every ε > 0,

lim
n→∞

P(|Xn − X | > ε) = 0.



The Law of Large Numbers

Theorem

Let X1,X2, · · · ,Xn be i.i.d. with common distribution X .

Let E[X ] = µ and Var(X ) = σ2.

Then, X converges to µ in probability.



Exercise

If X is a random variable with mean 3 and variance 16, use Chebyshev’s inequality to

find

1. A lower bound for P(23 < X < 43).

2. An upper bound for P(|X − 31| ≥ 14).
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