Chapter 5. Distributions of Functions of Random Variables

Math 3215 Spring 2024

Georgia Institute of Technology

Section 1.
Functions of One Random Variable

Functions of One Random Variable

Let X be a random variable.
Define $Y=u(X)$ for some function u.
We discuss how to find the distribution of Y from that of X.

Functions of One Random Variable

Example

Let X have a discrete uniform distribution on the integers from -2 to 5 .
Find the distribution of $Y=X^{2}$.

CDF Technique

Example

Let X have a gamma distribution with PDF

$$
f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\theta}}
$$

Find the distribution of $Y=e^{X}$.

CDF Technique

Theorem

Let X be a random variable with CDF F.
Suppose F is strictly increasing, $F(a)=0, F(b)=1$.
Let $Y \sim U(0,1)$.
Then, $X=F^{-1}(Y)$.

Change of Variables

Example

Let X have the PDF $f(x)=3(1-x)^{2}$ for $0<x<1$.
Find the distribution of $Y=(1-X)^{3}$.

Exercise

Let X have the PDF $f(x)=4 x^{3}$ for $0<x<1$.
Find the PDF of $Y=X^{2}$.

Section 2.
Transformations of Two Random
Variables

Transformations of Two Random Variables

If X_{1} and X_{2} are two continuous-type random variables with joint PDF $f\left(x_{1}, x_{2}\right)$.
Let $Y_{1}=u_{1}\left(X_{1}, X_{2}\right), Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$.
If $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right), X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$, then the joint PDF of Y_{1} and Y_{2} is

$$
f_{Y_{1}, Y_{2}}=|J| f_{X_{1}, X_{2}}\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right)
$$

where J is the Jacobian given by

$$
J:=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right| .
$$

Transformations of Two Random Variables

Example

Let X_{1} and X_{2} have the joint PDF

$$
f\left(x_{1}, x_{2}\right)=2, \quad 0<x_{1}<x_{2}<1 .
$$

Find the joint PDF of $Y_{1}=\frac{X_{1}}{X_{2}}$ and $Y_{2}=X_{2}$.

Exercise

Let X_{1} and X_{2} be independent random variables, each with PDF

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

Find the joint pdf of $Y_{1}=X_{1}-X_{2}$ and $Y_{2}=X_{1}+X_{2}$.

Section 3.
Several Independent Random
Variables

Independent random variables

Recall that X_{1} and X_{2} are independent if

$$
\mathbb{P}\left(X_{1} \in A, X_{2} \in B\right)=\mathbb{P}\left(X_{1} \in A\right) \mathbb{P}\left(X_{2} \in B\right)
$$

for all A, B.
In particular, if X_{1} and X_{2} have PDFs, then $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$.

Independent random variables

Definition

In general, we say $X_{1}, X_{2}, \cdots, X_{n}$ are independent if $\left\{X_{1} \in A_{1}\right\},\left\{X_{2} \in A_{2}\right\}, \cdots,\left\{X_{n} \in A_{n}\right\}$ are mutually independent, for any choice of $A_{1}, A_{2}, \cdots, A_{n}$.

In particular, if $X_{1}, X_{2}, \cdots, X_{n}$ has PDFs, then the joint PDF is the product. If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the same distribution, we say they are i.i.d. (independent and identically distributed) or a random sample of size n from that common distribution.

Independent random variables

Example

Let X_{1}, X_{2}, X_{3} be a random sample from a distribution with PDF

$$
f(x)=e^{-x}, \quad 0<x<\infty .
$$

Find $\mathbb{P}\left(0<X_{1}<1,2<X_{2}<4,3<X_{3}<7\right)$.

Expectation and Variance

Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be a sequence of random variables. Then,

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right] .
$$

If they are independent, then

$$
\mathbb{E}\left[X_{1} X_{2} \cdots X_{n}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \cdots \mathbb{E}\left[X_{n}\right]
$$

and

$$
\operatorname{Var}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\cdots+\operatorname{Var}\left[X_{n}\right] .
$$

Exercise

Let X_{1}, X_{2}, X_{3} be i.i.d. Geometric with $p=\frac{3}{4}$.
Let Y be the minimum of X_{1}, X_{2}, X_{3}.
Find $\mathbb{P}(Y>4)$.

Section 4.
The Moment-Generating Function
Technique

The Moment-Generating Function

Theorem

If $X_{1}, X_{2}, \cdots, X_{n}$ are independent and have the MGFs $M_{X_{i}}(t)$, then the MGF of $Y=a_{1} X_{1}+\cdots a_{n} X_{n}$ is $M_{Y}(t)=M_{X_{1}}\left(a_{1} t\right) \cdots M_{X_{n}}\left(a_{n} t\right)$.

Theorem

If $X_{1}, X_{2}, \cdots, X_{n}$ are i.i.d., then the MGF of $Y=X_{1}+\cdots+X_{n}$ is $M_{Y}(t)=M_{X}(t)^{n}$. If $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then the MGF is $M_{\bar{X}}(t)=M_{X}\left(\frac{t}{n}\right)^{n}$.

The Moment-Generating Function

Example

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. Bernoulli with p.
Let $Y=X_{1}+\cdots+X_{n}$.
Find the MGF of Y.

The Moment-Generating Function

Example

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. exponential with θ.
Let $Y=X_{1}+\cdots+X_{n}$.
Find the MGF of Y.

Exercise

Let X_{1}, X_{2}, X_{3} be independent Poisson with means 2, 1, 4 .
Find the MGF of $Y=X_{1}+X_{2}+X_{3}$.

Section 6.
The Central Limit Theorem

The Central Limit Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$, then
$\mathbb{E}[\bar{X}]=$
$\operatorname{Var}(\bar{X})=$
Let $W=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$, then
$\mathbb{E}[W]=$
$\operatorname{Var}(W)=$

The Central Limit Theorem

Theorem

If μ and σ^{2} are finite, then the distribution of $W=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ converges to that of the standard normal distribution $N(0,1)$ as $n \rightarrow \infty$.

The convergence is in the following sense: If n is large, for the standard normal Z,

$$
\mathbb{P}(W \leq x) \approx \mathbb{P}(Z \leq x)=: \Phi(x)=\int_{\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{|y|^{2}}{2}} d y .
$$

The Central Limit Theorem

Example

Let \bar{X} be the mean of a random sample of $n=25$ currents (in milliamperes) in a strip of wire in which each measurement has a mean of 15 and a variance of 4 .

Find the approximate probability $\mathbb{P}(14.4<\bar{X}<15.6)$.

The Central Limit Theorem

Example

Let \bar{X} denote the mean of a random sample of size 25 from the distribution whose PDF is $f(x)=\frac{x^{3}}{4}, 0<x<2$.

Find the approximate probability $\mathbb{P}(1.5 \leq \bar{X} \leq 1.65)$.

Exercise

Let X equal the maximal oxygen intake of a human on a treadmill, where the measurements are in milliliters of oxygen per minute per kilogram of weight.

Assume that, for a particular population, the mean of X is $\mu=54.030$ and the standard deviation is $\sigma=5.8$.

Let \bar{X} be the sample mean of a random sample of size $n=47$.
Find $P(52.761 \leq \bar{X} \leq 54.453)$, approximately.

Section 8.
Chebyshev's Inequality and
Convergence in Probability

Chebyshev's Inequality

Theorem

If the random variable X has a mean μ and variance σ^{2}, then for every $k \geq 1$,

$$
\mathbb{P}(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}}
$$

In particular $\varepsilon=k \sigma$, then

$$
\mathbb{P}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Chebyshev's Inequality

Example

Suppose X has a mean of 25 and a variance of 16 .
Find the lower bound of $\mathbb{P}(17<X<33)$.

The Law of Large Numbers

Definition

We say a sequence of random variables X_{n} converges to a random variable X in probability if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=0
$$

The Law of Large Numbers

Theorem

Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. with common distribution X.
Let $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Then, \bar{X} converges to μ in probability.

Exercise

If X is a random variable with mean 3 and variance 16 , use Chebyshev's inequality to find

1. A lower bound for $\mathbb{P}(23<X<43)$.
2. An upper bound for $\mathbb{P}(|X-31| \geq 14)$.

$$
0
$$

