# Math 3215: Intro to Probability and Statistics

## Final Exam, Summer 2023

## Date: July 31, 2023

NAME:\_\_\_\_\_

ID:\_\_\_\_\_

### **READ THE FOLLOWING INFORMATION.**

- This is a 170-minute.
- This exam contains 16 pages (including this cover page) and 12 questions. Total of points is 100.
- Books, notes, and other aids are not allowed.
- Show all steps to earn full credit.
- Do not unstaple pages. Loose pages will be ignored.

| Name                              | PMF                                                                                | Mean                | Variance              |
|-----------------------------------|------------------------------------------------------------------------------------|---------------------|-----------------------|
| Ber( <i>p</i> )                   | $\mathbb{P}(X=1) = p, \mathbb{P}(X=0) = 1 - p$                                     | р                   | p(1-p)                |
| Bin(n,p)                          | $\binom{n}{x} p^{x} (1-p)^{n-x}$ for $x = 0, 1, \dots, n$                          | np                  | np(1-p)               |
| $\operatorname{Geom}(p)$          | $p(1-p)^{x-1}$ for $x = 1, 2,$                                                     | $\frac{1}{p}$       | $\frac{1-p}{p^2}$     |
| NegBin(r, p)                      | $\binom{x-1}{r-1} p^r q^{x-r}$ for $x = r, r+1, \dots$                             | $\frac{r}{p}$       | $\frac{r(1-p)}{p^2}$  |
| $Poisson(\lambda)$                | $\frac{e^{-\lambda}\lambda^x}{x!} \text{ for } x = 0, 1, \dots$                    | λ                   | λ                     |
| Uniform( <i>a</i> , <i>b</i> )    | $\frac{1}{b-a}$ for $x \in (a,b)$                                                  | $\frac{a+b}{2}$     | $\frac{(b-a)^2}{12}$  |
| Normal( $\mu, \sigma^2$ )         | $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}$ for $x \in (-\infty,\infty)$ | μ                   | $\sigma^2$            |
| $Exp(\lambda)$                    | $\lambda e^{-\lambda x}$ for $x > 0$                                               | $\frac{1}{\lambda}$ | $\frac{1}{\lambda^2}$ |
| $\operatorname{Gamma}(a,\lambda)$ | $rac{\lambda^a x^{a-1} e^{-\lambda x}}{\Gamma(a)}$ for $x > 0$                    | $\frac{a}{\lambda}$ | $\frac{a}{\lambda^2}$ |

| Geometric series              | $\sum_{k=0}^{N} ap^{k} = \frac{a(1-p^{N+1})}{1-p} \text{ for } p \in (0,1)$ |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------|--|--|--|
| <b>Power series for</b> $e^x$ | $e^x = \sum_{k=0}^\infty rac{x^k}{k!}$                                     |  |  |  |

1. Suppose A, B, and C are events with

$$\mathbb{P}(A) = 0.58, \quad \mathbb{P}(B) = 0.55, \quad \mathbb{P}(C) = 0.4,$$
  
 $\mathbb{P}(A \cap B) = 0.28, \quad \mathbb{P}(A \cap C) = 0.23, \quad \mathbb{P}(B \cap C) = 0.23,$   
 $\mathbb{P}(A \cap B \cap C) = 0.13.$ 

(a) (4 points) Find  $\mathbb{P}(C|A \cap B)$ .

(b) (4 points) Find  $\mathbb{P}(A^c \cap B^c \cap C^c)$ .

- 2. Suppose you roll two 4 faced dice, with faces labeled 1,2,3,4, and each equally likely to appear on top. Let  $X_1$  be the number from the first die and  $X_2$  the number from the second die. Let  $Y_1 = \min\{X_1, X_2\}$  and  $Y_2 = \max\{X_1, X_2\}$ .
  - (a) (4 points) Find the PMF of  $Y_2$ .

(b) (4 points) Find  $\mathbb{E}[Y_1 + Y_2]$ .

3. Suppose *X* is a random variable taking values in  $S = \{0, 1, 2, 3, ...\}$  with PMF  $f_X(k) = \frac{C \cdot 2^k}{k!}$ . (a) (4 points) Find the constant *C*.

(b) (4 points) Find  $\mathbb{E}[e^{3X}]$ .

4. Consider an urn containing 10 balls, of which 5 are black and 5 are white. Suppose two balls are drawn at random without replacement. Let *A* be the event that the first ball is black, and *B* the event that the second ball is white.

(a) (4 points) Find  $\mathbb{P}(B)$ .

(b) (4 points) Find  $\mathbb{P}(A|B)$ .

5. Let X and Y be two random variables with joint PDF f<sub>X,Y</sub>(x, y) = 2e<sup>-x-y</sup> for 0 ≤ x ≤ y < ∞ and otherwise 0.</li>
(a) (4 points) Find the marginal PDF of X.

(b) (4 points) Find the conditional expectation  $\mathbb{E}[Y|X = x]$  for x > 0.

6. Let *X* and *Y* be two random variables with joint PDF  $f_{X,Y}(x,y) = 2$  for 0 < x + y < 1, x > 0, y > 0, and otherwise 0. (a) (5 points) Find the covariance Cov(X,Y).

(b) (5 points) Compute  $\mathbb{P}(X \leq \frac{1}{2})$ ,  $\mathbb{P}(Y \leq \frac{1}{2})$ , and  $\mathbb{P}(X \leq \frac{1}{2}, Y \leq \frac{1}{2})$ .

- 7. Let (X, Y) be a bivariate normal random vector.
  - (a) (5 points) Suppose that both X and Y have mean 2 and variance 3, while the correlation coefficient of X and Y is  $\rho = -\frac{1}{6}$ . Find Var(X Y).

(b) (5 points) Assume now that *X* and *Y* have mean 7 and variance 4, but that the correlation coefficient has changed and is now given by  $\rho = 0$ . Write  $\mathbb{P}(4 \le X \le 9, Y \le 8)$  in terms of  $\Phi(z) = \mathbb{P}(Z \le z)$  for  $z \ge 0$  where *Z* is the standard normal random variable.

- 8. Let *X* be a uniform random variable on (-1, 1) and  $Y = X^3$ .
  - (a) (4 points) Find the pdf of Y.

(b) (4 points) Compute Cov(X, Y).

- 9. A fair die will be rolled 720 times independently.
  - (a) (5 points) What is the probability that among the 180 rolls the number 6 will appear between 27 and 32 times inclusively? That is, what is  $\mathbb{P}(27 \le X \le 32)$ ? Write down the probability without using the tables and approximations.

(b) (5 points) Using a normal approximation, **with half-unit correction**, write down an expression for the probability that among the 180 rolls the number 6 will appear between 27 and 32 times inclusively. Use the corresponding tables to find an approximate value for this probability. 10. (6 points) Let  $\overline{X}$  be the mean of a random sample of size n = 25 from a distribution with mean  $\mu = 16$  and variance  $\sigma^2 = 63$ . Use Chebvshev's inequality to find a lower bound for  $\mathbb{P}(14 < \overline{X} < 18)$ .

(b) (5 points) Find  $\mathbb{E}[W_1]$  and  $\mathbb{E}[W_6]$ .

11. Let W<sub>1</sub> < W<sub>2</sub> < ··· < W<sub>6</sub> be the order statistics of *n* independent observations from a U(0,1) distribution.
(a) (5 points) Find the PDFs of W<sub>1</sub> and W<sub>6</sub>.

12. (6 points) A random sample of size 100 from the normal distribution  $N(\mu, 25)$  yielded  $\overline{X} = 35.6$ . Find a two-sided 95% confidence interval for  $\mu$ .

This page intentionally left blank.

### Table Va The Standard Normal Distribution Function



| z              | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0            | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1            | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2            | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3            | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4            | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5            | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6            | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7            | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7703 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8            | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9            | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0            | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1            | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2            | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3            | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4            | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5            | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6            | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7            | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8            | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9            | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0            | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1            | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2            | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3            | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4            | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5            | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6            | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7            | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8            | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9            | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0            | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
|                |        |        |        |        |        |        |        |        |        |        |
| α              | 0.400  | 0.300  | 0.200  | 0.100  | 0.050  | 0.025  | 0.020  | 0.010  | 0.005  | 0.001  |
| $z_{\alpha}$   | 0.253  | 0.524  | 0.842  | 1.282  | 1.645  | 1.960  | 2.054  | 2.326  | 2.576  | 3.090  |
| $Z_{\alpha/2}$ | 0.842  | 1.036  | 1.282  | 1.645  | 1.960  | 2.240  | 2.326  | 2.576  | 2.807  | 3.291  |

This page intentionally left blank.