Math 3215: Intro to Probability and Statistics

Final Exam, Summer 2023
Date: July 31, 2023

NAME:
ID: \qquad

READ THE FOLLOWING INFORMATION.

- This is a 170 -minute.
- This exam contains 16 pages (including this cover page) and 12 questions. Total of points is 100 .
- Books, notes, and other aids are not allowed.
- Show all steps to earn full credit.
- Do not unstaple pages. Loose pages will be ignored.

Name	PMF	Mean	Variance
$\operatorname{Ber}(p)$	$\mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p$	p	$p(1-p)$
$\operatorname{Bin}(n, p)$	$\binom{n}{x} p^{x}(1-p)^{n-x}$ for $x=0,1, \ldots, n$	$n p$	$n p(1-p)$
$\operatorname{Geom}(p)$	$p(1-p)^{x-1}$ for $x=1,2, \ldots$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
$\operatorname{NegBin}(r, p)$	$\binom{x-1}{r-1} p^{r} q^{x-r}$ for $x=r, r+1, \ldots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$
$\operatorname{Poisson}(\lambda)$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$ for $x=0,1, \ldots$	λ	λ
$\operatorname{Uniform}(a, b)$	$\frac{1}{b-a}$ for $x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ for $x \in(-\infty, \infty)$	μ	σ^{2}
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}$ for $x>0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$
$\operatorname{Gamma}(a, \lambda)$	$\frac{\lambda^{a} x^{a-1} e^{-\lambda x}}{\Gamma(a)}$ for $x>0$	$\frac{a}{\lambda}$	$\frac{a}{\lambda^{2}}$

Geometric series	$\sum_{k=0}^{N} a p^{k}=\frac{a\left(1-p^{N+1}\right)}{1-p}$ for $p \in(0,1)$
Power series for e^{x}	$e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

1. Suppose A, B, and C are events with

$$
\begin{aligned}
\mathbb{P}(A)=0.58, & \mathbb{P}(B)=0.55, \quad \mathbb{P}(C)=0.4 \\
\mathbb{P}(A \cap B)=0.28, & \mathbb{P}(A \cap C)=0.23, \quad \mathbb{P}(B \cap C)=0.23 \\
& \mathbb{P}(A \cap B \cap C)=0.13
\end{aligned}
$$

(a) (4 points) Find $\mathbb{P}(C \mid A \cap B)$.
(b) (4 points) Find $\mathbb{P}\left(A^{c} \cap B^{c} \cap C^{c}\right)$.
2. Suppose you roll two 4 faced dice, with faces labeled $1,2,3,4$, and each equally likely to appear on top. Let X_{1} be the number from the first die and X_{2} the number from the second die. Let $Y_{1}=\min \left\{X_{1}, X_{2}\right\}$ and $Y_{2}=\max \left\{X_{1}, X_{2}\right\}$.
(a) (4 points) Find the PMF of Y_{2}.
(b) (4 points) Find $\mathbb{E}\left[Y_{1}+Y_{2}\right]$.
3. Suppose X is a random variable taking values in $S=\{0,1,2,3, \ldots\}$ with PMF $f_{X}(k)=\frac{C \cdot 2^{k}}{k!}$. (a) (4 points) Find the constant C.
(b) (4 points) Find $\mathbb{E}\left[e^{3 X}\right]$.
4. Consider an urn containing 10 balls, of which 5 are black and 5 are white. Suppose two balls are drawn at random without replacement. Let A be the event that the first ball is black, and B the event that the second ball is white.
(a) (4 points) Find $\mathbb{P}(B)$.
(b) (4 points) Find $\mathbb{P}(A \mid B)$.
5. Let X and Y be two random variables with joint $\operatorname{PDF} f_{X, Y}(x, y)=2 e^{-x-y}$ for $0 \leq x \leq y<\infty$ and otherwise 0 .
(a) (4 points) Find the marginal PDF of X.
(b) (4 points) Find the conditional expectation $\mathbb{E}[Y \mid X=x]$ for $x>0$.
6. Let X and Y be two random variables with joint $\operatorname{PDF} f_{X, Y}(x, y)=2$ for $0<x+y<1, x>0, y>0$, and otherwise 0 . (a) (5 points) Find the covariance $\operatorname{Cov}(X, Y)$.
(b) (5 points) Compute $\mathbb{P}\left(X \leq \frac{1}{2}\right), \mathbb{P}\left(Y \leq \frac{1}{2}\right)$, and $\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$.
7. Let (X, Y) be a bivariate normal random vector.
(a) (5 points) Suppose that both X and Y have mean 2 and variance 3, while the correlation coefficient of X and Y is $\rho=-\frac{1}{6}$. Find $\operatorname{Var}(X-Y)$.
(b) (5 points) Assume now that X and Y have mean 7 and variance 4, but that the correlation coefficient has changed and is now given by $\rho=0$. Write $\mathbb{P}(4 \leq X \leq 9, Y \leq 8)$ in terms of $\Phi(z)=\mathbb{P}(Z \leq z)$ for $z \geq 0$ where Z is the standard normal random variable.
8. Let X be a uniform random variable on $(-1,1)$ and $Y=X^{3}$.
(a) (4 points) Find the pdf of Y.
(b) (4 points) Compute $\operatorname{Cov}(X, Y)$.
9. A fair die will be rolled 720 times independently.
(a) (5 points) What is the probability that among the 180 rolls the number 6 will appear between 27 and 32 times inclusively? That is, what is $\mathbb{P}(27 \leq X \leq 32)$? Write down the probability without using the tables and approximations.
(b) (5 points) Using a normal approximation, with half-unit correction, write down an expression for the probability that among the 180 rolls the number 6 will appear between 27 and 32 times inclusively. Use the corresponding tables to find an approximate value for this probability.
10. (6 points) Let \bar{X} be the mean of a random sample of size $n=25$ from a distribution with mean $\mu=16$ and variance $\sigma^{2}=63$. Use Chebvshev's inequality to find a lower bound for $\mathbb{P}(14<\bar{X}<18)$.
11. Let $W_{1}<W_{2}<\cdots<W_{6}$ be the order statistics of n independent observations from a $U(0,1)$ distribution.
(a) (5 points) Find the PDFs of W_{1} and W_{6}.
(b) (5 points) Find $\mathbb{E}\left[W_{1}\right]$ and $\mathbb{E}\left[W_{6}\right]$.
12. (6 points) A random sample of size 100 from the normal distribution $N(\mu, 25)$ yielded $\bar{X}=35.6$. Find a two-sided 95\% confidence interval for μ.

This page intentionally left blank.

Page 14 of 16

Table Va The Standard Normal Distribution Function

This page intentionally left blank.

