Lecture 1. Basic Combinatorics (Sec 1.1-3)

University of Illinois at Urbana-Champaign
Math 461 Spring 2022

Instructor: Daesung Kim

Why studying probability?
behavior of consumer depends on

complex.
con certainty
whkown $\rightarrow\{$ nature. thing.

Why studying probability?
Part 1: What is probability
Part 2: Random variable.
Part 3: Distribution. (Pattern).

Basic Principle of Counting

Question: How many two-letter words are there (using 26 alphabet)?
$A A$
$A B$
$A C$
\vdots
$A Z$

$$
26
$$

26
26

$$
26 \times 26
$$

Basic Principle of Counting

Suppose that two experiments are to be performed.
Then if experiment 1 can result in any one of m possible outcomes
and if, for each outcome of experiment 1, there are n possible outcomes of experiment 2,
then together there are mn possible outcomes of the two experiments.

Basic Principle of Counting

Example

How many different 7-place license plates are possible if the first 3 places are to be occupied by letters and the final 4 by numbers? How many license plates would be possible if repetition among letters or numbers were prohibited?

Question 1

Δ

$\times 10$

Basic Principle of Counting
Example
How many different 7 -place license plates are possible if the first 3 places are to be occupied by letters and the final 4 by numbers? How many license plates would be possible if repetition among letters or numbers were prohibited?
Q2: w/O Repetition.\square \square $\Delta \Delta \Delta$ Δ

$$
26 \times 25 \times 24 \times 10 \times 9 \times 8 \times 7
$$

Basic Principle of Counting
Example
Consider a set S of n elements, say $S=\{1,2, \cdots, n\}$. How many different subsets of S are there?

$$
\begin{aligned}
& n=1 \text { : } \\
& \phi,\{1\} \\
& x=2 \text { : } \\
& \phi,\{1\}, 22\}, 91,2\} \rightarrow 4 \\
& n=3: \\
& \left.\begin{array}{l}
\{1,4,\{2\},\{3\} \\
\{1,2\},\{2,3\}, 21,3\} \\
\{1,2,3\}\}
\end{array}\right\}^{\{1\}} 8 \\
& x=k \quad a_{n} \quad \rightarrow a_{n+1}=2 a_{n}, \quad a_{1}=2
\end{aligned}
$$

Permutation

Each ordered arrangement of n distinct objects is called a permutation.

The number of all possible permuations is $n!=n \cdot(n-1) \cdots 2 \cdot 1$.

Permutation ANS: $4!\times(4!\times 3!\times 2!\times 1!)$

Example

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are mathematics books, 3 are chemistry books, 2 are history books, and 1 is a language book. Ms. Jones wants to arrange her books so that all the books dealing with the same subject are together on the shelf. How many different arrangements are possible?

If
topics
(2)

MATH 461 E13/E14 SP22: Probability Theory (Kim, D)

Dashboard / My courses / MATH 461 E13/E14 SP22

On Jan. 19 and Jan. 21, the classes will be in Zoom.
Time: 1-1:50pm
Link: https://illinois.zoom.us/j/85262849161?pwd=UG1ZKzIOTG0wU01COTRGZHpvSVFYUT09
Meeting ID: 85262849161
Password: 594240

Homeworks

Homework 1 (Due: Jan 28, 2021)

MATH 461 E13/E14 SP22: Probability Theory (Kim, D)

Dashboard / My courses / MATH 461 E13/E14 SP22 / Homeworks / Homework 1 (Due: Jan 28, 2021)

Homework 1 (Due: Jan 28, 2021)

Instruction (O

$$
\operatorname{cote} x
$$

- Each problem is worth 10 points and only five randomly chosen problems will be graded.
- Due is the beginning of the lecture on Jan 28.

(2)

Submission status

Submission status	No attempt
Grading status	Not graded
Due date	Friday, January 28, 2022,12.00 PM
Time remaining	7 days 11 hours
Last modified	-

Permutation
ANS:

$$
\begin{aligned}
& \frac{7!}{4}=\binom{7}{2,2,1,1!!}=2!2!
\end{aligned}
$$

Example
ANS: $\quad \frac{7!}{4}=\left(\begin{array}{c}7 \\ 2,2,1,!!)\end{array}\right.$

How many different letter arrangements can be formed from the letters arrange?

