Random Box

Consider two boxes, one containing 10 black and 8 white marble, the other 8 black and 7 white marble. A box is selected at random (each choice is equally likely), and a marble is drawn from it at random (each choice is equally likely).

What is the probability that the first box was the one selected given that the marble is black?

Answer $=\quad$ number (3 significant figures)

Sol

$$
\begin{aligned}
F & =\text { first box is selected. } \\
B & =\text { Black ball is drawn. } \\
\mathbb{P}(F \mid B) & =\frac{\mathbb{P}(B \mid F) \mathbb{P}(F)}{\mathbb{P}(B)} \\
& =\frac{\mathbb{P}(B \mid F) \mathbb{P}(F)}{\mathbb{P}(B \mid F) \mathbb{P}(F)+\mathbb{P}(B \mid F) \mathbb{P}(F)} \\
& =\frac{\frac{10}{18} \cdot \frac{1}{2}}{\frac{10}{18} \cdot \frac{1}{2}+\frac{8}{15} \cdot \frac{1}{2}}=\frac{\frac{5}{9}}{\frac{5}{9}+\frac{8}{15}}=\frac{25}{25+24} \\
& =\frac{25}{49}
\end{aligned}
$$

Random Voter

A total of 36 percent of the voters in a certain city classify themselves as Independents, whereas 36 percent classify themselves as Liberals and 28 percent say that they are Conservatives.

In a recent local election, 68 percent of the Independents, 63 percent of the Liberals, and 79 percent of the Conservatives voted. A voter is chosen at random.

Given that this person voted in the local election, what is the probability that he or she is a Conservative?

```
Answer = number (3 significant figures) © 
```

Sol $V=$ the person voted
$G^{\prime}, L, I=$ Conservatives, Liberals, Independents
$\mathbb{P}(G \mid V)=\frac{\mathbb{P}(V \mid G) \mathbb{P}(G)}{\mathbb{P}(V \mid G) P(G)+\mathbb{P}(V \mid L) \mathbb{P}(L)+\mathbb{P}(V \mid I) \mathbb{P}(I)}$
$=\frac{(0.79) \cdot(0.28)}{(0.79) \cdot(0.28)+(0.63) \cdot(0.36)+(0.68) \cdot(0.36)}$

$$
\approx 0.31928
$$

Probability of Winning

9 distinct numbers are randomly distributed to players numbered 1 through 9 . Whenever two players compare their numbers, the one with the higher one is declared the winner. Initially, players 1 and 2 compare their numbers; the winner then compares her number with that of player 3 , and so on.

Let X denote the number of times player 2 is a winner. Find $\mathrm{P}(X=8)$.
Answer $=\quad$ number (3 significant figures)

Sol Let x be the number of times the i-th player is a winner, for $i=1 ; \cdots, 9$. We wont to find $\mathbb{P}(x=j)$ for $j=1 ; \cdots, \min \{8,10-i\}$
 In this case, the player should have the biggest number.

Thus,

$$
\mathbb{P}(x=j)=\frac{1}{9}
$$

Case 2: If the player lose,

$\Rightarrow(i+j)$-th player has the largest number among the first (iii) players
i-th player hus the $2^{\text {nd }}$ largest number
Choose (he largest two numbers among first (inti) players

$$
\begin{aligned}
& \text { and the largest two numbers atwong first (iota) places } \\
& \Rightarrow \mathbb{P}(x=\dot{j})=\frac{\binom{9}{i+j)} \cdot(i+j-2)!}{9!} \cdot(9-(i+j))!(i+j)(i+j-1)
\end{aligned}
$$

