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Recall



Combination

Consider n distinct objects.

How many different groups, called combinations, of size r
(1 6 r 6 n) of these objects can be formed?

The number of combinations is
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Combination

Example

A committee of 3 is to be formed from a group of 20 people.

How many different committees are possible?
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Combination

Example

Consider a set of 8 antennas of which 5 are defective and 3 are

functional and assume that all of the defectives and all of the

functionals are considered indistinguishable. How many linear

orderings are there in which no two defectives are consecutive?
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Binomial Theorem

For real numbers x, y and a natural number n, we have

(x + y)n =
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Multinomial Coefficients

For integer n > 1 and integers n1, · · · , nr > 0 such that

n1 + · · ·+ nr = n,

✓
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Multinomial Coefficients: First Interpretation

The number of ways to divide n distinct objects into r distinct
groups of size n1, · · · , nr with n1 + · · ·+ nr = n is
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.



Multinomial Coefficients: First Interpretation

Example

Ten children are to be divided into an A team and a B team of 5

each. The A team will play in one league and the B team in

another. How many different divisions are possible? What if we

just divide them into two teams?



Multinomial Coefficients: Second Interpretation

The number of ordered arrangements of n objects of which n1
are alike, · · · , nr are alike with n1, · · · , nr with n1 + · · ·+ nr = n is
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Multinomial Coefficients: Second Interpretation

Example

How many different letter arrangements can be formed from the

letters PEPPER?



Multinomial Theorem

For real numbers x1, · · · , xr and an integer n > 1, we have

(x1 + · · ·+ xr)
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where the sum is over all integers n1, · · · , nr > 0 such that

n1 + · · ·+ nr = n.



Multinomial Theorem

Example

What is the coefficient of the term x2y3z in the expansion of

(x + y + z)6?



Multinomial Theorem

Example

Consider n distinct balls and r distinct urns. How many different

ways are there to distribute balls into urns? (An urn can contain

any number of balls, including zero.) What if the balls are

indistinguishable?




