Lecture 2. Basic Combinatorics II (Sec 1.4-6)

University of Illinois at Urbana-Champaign
Math 461 Spring 2022

Instructor: Daesung Kim

Recall

Combination don't care the ordering.
Consider n distinct objects.
How many different groups, called combinations, of size r $(1 \leqslant r \leqslant n)$ of these objects can be formed?
The number of combinations is

$$
\binom{n}{r}=\frac{n \cdot(n-1) \cdots(n-r+1)}{r \cdot(r-1) \cdots 1}=\frac{n!}{(n-r)!r!} .
$$

n choose r

$$
\{1,2, \cdots, n\}_{n-r+1}
$$

$$
\underbrace{n} \times \underbrace{n}_{n}=\binom{n}{n}
$$

r

Combination
Consider n distinct objects.
How many different groups, called combinations, of size r $(1 \leqslant r \leqslant n)$ of these objects can be formed?
The number of combinations is

$$
\begin{aligned}
&\binom{n}{r}=\frac{n \cdot(n-1) \cdots(n-r+1)}{r \cdot(r-1) \cdots 1}=\frac{n!}{(n-r)!r!} \\
& n \cdot(n-1) \cdots(n-r+1)=\binom{n}{r} \cdot r! \\
& \Rightarrow\binom{n}{r}=\frac{n \cdot(n-1) \cdots(n-r+1)(n-r)(n-r-1)}{r!(n-r)(n-r-1) \cdots 3 \cdot 2 \cdot 1} \\
&=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

Combination
Example
A committee of 3 is to be formed from a group of 20 people.
How many different committees are possible?

$$
\begin{aligned}
=\binom{20}{3} & =\frac{20!}{3!\cdot(20-3)!}=\frac{20 \cdot 19 \cdot+8}{3 \cdot 2 \cdot 1} \\
& =20 \cdot 19 \cdot 3
\end{aligned}
$$

Note Replace 3 with $17, \quad\binom{20}{3}=\binom{20}{17}$
get the same answer.
In general, $\quad\binom{n}{r}=\binom{n}{n-r}$

Combination
Example
Consider a set of 8 antennas of which δ are defective and functional and assume that all of the defectives and all of the functionals are considered indistinguishable. How many linear orderings are there in which no two defectives reconsecutive?
Method 1

$$
\begin{aligned}
& D_{1}, D_{2}, D_{3}, F_{1}, F_{2}, F_{3}, \\
& \frac{8!}{3!\cdot 5!}=\binom{8}{3} \longleftarrow \text { why }^{2}
\end{aligned}
$$

Method 2

Combination

Example

3 5
Consider a set of 8 antennas of which are defective and are functional and assume that all of the defectives and all of the functionals are considered indistinguishable. How many linear orderings are there in which notwo defectives are consecutive?

$$
\begin{aligned}
& \binom{6}{3}=\frac{6!}{3!(6-3)!}=\frac{6 \cdot 5 \cdot 4}{3-2 \cdot 1}=20
\end{aligned}
$$

Combination

Example

Consider a set of 8 antennas of which 5 are defective and 3 are functional and assume that all of the defectives and all of the functionals are considered indistinguishable. How many linear orderings are there in which no two defectives are consecutive?

Binomial Theorem
For real numbers x, y and a natural number n, we have

$$
\underline{(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}} \text { proof next tine. }
$$

Ex

$$
\begin{aligned}
& n=1 \quad(x+y)^{1}=x+y \\
& \sum_{k=0}^{1}\binom{1}{k} x^{k} y^{1-k}= \\
& \\
& +\binom{1}{0}^{4} x^{0} \cdot y^{1-0} \\
& = \\
& n=2 \quad x+y x_{1}^{1} y^{1-1} \\
& (x+y)^{2}=x^{2}+2 x y+y^{2}=\binom{2}{0} x^{2}+\binom{2}{1} x y+\binom{2}{2}^{2}
\end{aligned}
$$

Multinomial Coefficients

For integer $n \geqslant 1$ and integers $n_{1}, \cdots, n_{r} \geqslant 0$ such that $n_{1}+\cdots+n_{r}=n$,

$$
\binom{n}{n_{1}, \cdots, n_{r}}=\frac{n!}{n_{1}!\cdots n_{r}!} .
$$

Multinomial Coefficients: First Interpretation

The number of ways to divide n distinct objects into r distinct groups of size n_{1}, \cdots, n_{r} with $n_{1}+\cdots+n_{r}=n$ is

$$
\binom{n}{n_{1}, \cdots, n_{r}} .
$$

Multinomial Coefficients: First Interpretation

Example

Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league and the B team in another. How many different divisions are possible? What if we just divide them into two teams?

Multinomial Coefficients: Second Interpretation

The number of ordered arrangements of n objects of which n_{1} are alike, \cdots, n_{r} are alike with n_{1}, \cdots, n_{r} with $n_{1}+\cdots+n_{r}=n$ is

$$
\binom{n}{n_{1}, \cdots, n_{r}}
$$

Multinomial Coefficients: Second Interpretation

Example

How many different letter arrangements can be formed from the letters PEPPER?

Multinomial Theorem

For real numbers x_{1}, \cdots, x_{r} and an integer $n \geqslant 1$, we have

$$
\left(x_{1}+\cdots+x_{r}\right)^{n}=\sum\binom{n}{n_{1}, \cdots, n_{r}} x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}
$$

where the sum is over all integers $n_{1}, \cdots, n_{r} \geqslant 0$ such that $n_{1}+\cdots+n_{r}=n$.

Multinomial Theorem

Example

What is the coefficient of the term $x^{2} y^{3} z$ in the expansion of $(x+y+z)^{6}$?

Multinomial Theorem

Example

Consider n distinct balls and r distinct urns. How many different ways are there to distribute balls into urns? (An urn can contain any number of balls, including zero.) What if the balls are indistinguishable?

