Lecture 2. Basic Combinatorics II (Sec 1.4-6)

University of Illinois at Urbana–Champaign Math 461 Spring 2022

Instructor: Daesung Kim

Recall

Combination don't care the ordering

Consider *n* distinct objects. How many different groups, called combinations, of size r $(1 \le r \le n)$ of these objects can be formed? The number of combinations is

$$\binom{n}{r} = \frac{n \cdot (n-1) \cdots (n-r+1)}{r \cdot (r-1) \cdots 1} = \frac{n!}{(n-r)!r!}$$

n choose r

Consider *n* distinct objects. How many different groups, called combinations, of size *r* $(1 \le r \le n)$ of these objects can be formed? The number of combinations is

$$\binom{n}{r} = \frac{n \cdot (n-1) \cdots (n-r+1)}{r \cdot (r-1) \cdots 1} = \frac{n!}{(n-r)!r!}.$$

$$1 \cdot (m-1) \cdots (n-r+1) = \binom{n}{r} \cdot \frac{r!}{r}.$$

$$\frac{n \cdot (m-1) \cdots (n-r+1)(n-r)(n-r-1)}{r!} \cdot \frac{n \cdot (n-r+1)(n-r)(n-r-1)}{r!}.$$

$$= \frac{n \cdot (m-1) \cdots (n-r-1) \cdots 3 \cdot 2 \cdot 1}{r! (n-r)(n-r-1) \cdots 3 \cdot 2 \cdot 1}.$$

Example

A committee of 3 is to be formed from a group of 20 people. How many different committees are possible?

3

$$= \begin{pmatrix} 20 \\ 3 \end{pmatrix} = \frac{20!}{3! \cdot (20-3)!} = \frac{20 \cdot (9 \cdot 18)}{3! \cdot (20-3)!}$$
$$= 20 \cdot (9 \cdot 3)$$
$$= 20 \cdot (9 \cdot 3)$$
$$\underbrace{\text{Note Replace 3 with 1T, } \begin{pmatrix} 20 \\ 3 \end{pmatrix} = \begin{pmatrix} 20 \\ 2 - 3 \end{pmatrix}}$$
get the some consider.
for general, $\binom{n}{r} = \binom{n}{n-r}$

Example

Consider a set of 8 antennas of which 6 are defective and 8 are functional and assume that all of the defectives and all of the functionals are considered indistinguishable. How many linear orderings are there in which no two defectives are consecutive?

3

5

Example

Consider a set of 8 antennas of which \overrightarrow{P} are defective and \overrightarrow{P} are functional and assume that all of the defectives and all of the functionals are considered indistinguishable. How many linear orderings are there in which no two defectives are consecutive?

$$\begin{pmatrix} 6 \\ 3 \end{pmatrix} = \frac{6!}{3!(6-3)!} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$$

Example

Consider a set of 8 antennas of which 5 are defective and 3 are functional and assume that all of the defectives and all of the functionals are considered indistinguishable. How many linear orderings are there in which no two defectives are consecutive?

OF OF OF OF OF O

@ p°F° D°F° D°

Binomial Theorem

For real numbers x, y and a natural number n, we have

$$\underbrace{\frac{(x+y)^{n}}{k=0} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}}_{K=0} \text{ proof with Anc.}}$$

$$\underbrace{\frac{(x+y)^{n}}{k=0} = \frac{(x+y)^{n}}{k} = \frac{(x+y)^{n-k}}{(x+y)^{n-k}} = \frac{(x+y)^{n-k}}}{(x+y)^{n-k}} = \frac{(x+y)^{n-k}}}{$$

Multinomial Coefficients

For integer $n \ge 1$ and integers $n_1, \dots, n_r \ge 0$ such that $n_1 + \dots + n_r = n$,

$$\binom{n}{n_1,\cdots,n_r} = \frac{n!}{n_1!\cdots n_r!}.$$

Multinomial Coefficients: First Interpretation

The number of ways to divide *n* distinct objects into *r* distinct groups of size n_1, \dots, n_r with $n_1 + \dots + n_r = n$ is

 $\binom{n}{n_1,\cdots,n_r}.$

Multinomial Coefficients: First Interpretation

Example

Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league and the B team in another. How many different divisions are possible? What if we just divide them into two teams?

Multinomial Coefficients: Second Interpretation

The number of ordered arrangements of *n* objects of which n_1 are alike, \cdots , n_r are alike with n_1 , \cdots , n_r with $n_1 + \cdots + n_r = n$ is

 $\binom{n}{n_1,\cdots,n_r}$.

Multinomial Coefficients: Second Interpretation

Example How many different letter arrangements can be formed from the letters *PEPPER*?

Multinomial Theorem

For real numbers x_1, \dots, x_r and an integer $n \ge 1$, we have

$$(x_1 + \dots + x_r)^n = \sum \binom{n}{n_1, \dots, n_r} x_1^{n_1} \cdots x_r^{n_r}$$

where the sum is over all integers $n_1, \dots, n_r \ge 0$ such that $n_1 + \dots + n_r = n$.

Multinomial Theorem

Example What is the coefficient of the term x^2y^3z in the expansion of $(x + y + z)^6$?

Multinomial Theorem

Example

Consider n distinct balls and r distinct urns. How many different ways are there to distribute balls into urns? (An urn can contain any number of balls, including zero.) What if the balls are indistinguishable?

