Lecture 2. Basic Combinatorics Il (Sec 1.4-6)
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Consider n distinct objects.

How many different groups, called combinations, of size r
(1 < r < n) of these objects can be formed?

The number of combinations is

(n) n-m—1)---(n—r+1) n!
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How many different groups, called combinations, of size r
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Combination

Example
A committee of 3 is to be formed from a group of .20 people.
How many different committees are possible?
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2 &
Consider a set of 8 antennas of which 8 are defective and 8 are
functional and assume that all of the defectives and all of the
functionals are considered mdlstlngwshable How many linear
orderings are there iR ive?
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2 S
Consider a set of 8 antennas of which @ are defective and & are
functional and assume that all of the defectives and all of the
functionals are considered indistinguishable. How many linear
orderings are there.in which np-two defectives are consecutive?
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Combination

Example

Consider a set of 8 antennas of which 5 are defective and 3 are
functional and assume that all of the defectives and all of the
functionals are considered indistinguishable. How many linear
orderings are there in which no two defectives are consecutive?
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For real numbers x,y and a natural number n, we have

(x+y)" = Z <”>xkyn —
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Multinomial Coefficients

For integer n > 1 and integers ny, - - - , n, > 0 such that
ny+---+n =mn,



Multinomial Coefficients: First Interpretation

The number of ways to divide » distinct objects into r distinct
groups of size ny,--- ,n, withny +--- +n, =nis

)



Multinomial Coefficients: First Interpretation

Example
Ten children are to be divided into an A team and a B team of 5

each. The A team will play in one league and the B team in
another. How many different divisions are possible? What if we
just divide them into two teams?



Multinomial Coefficients: Second Interpretation

The number of ordered arrangements of n objects of which n;
are alike, - - -, n, are alike with ny,--- ,n, withny +---+n, =nis

.



Multinomial Coefficients: Second Interpretation

Example
How many different letter arrangements can be formed from the
letters PEPPER?



Multinomial Theorem

For real numbers x1,--- ,x, and an integer n > 1, we have

n
(214 +x)" =) (m--- n)"rlll"'x?r
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where the sum is over all integers ny, - - - ,n, > 0 such that
n+---+n=n.



Multinomial Theorem

Example
What is the coefficient of the term x?y>z in the expansion of
(x +y+2)°?



Consider n distinct balls and r distinct urns. How many different
ways are there to distribute balls into urns? (An urn can contain
any number of balls, including zero.) What if the balls are
indistinguishable?






