Block Arrangements

A child has 18 blocks, of which 6 are black, 8 are red, 2 is white, and 2 is blue. (Blocks in each color are indistinguishable.)

If the child puts the blocks in a line, how many arrangements are possible?
Write only integer answer.
Answer $=$ number (4 significant figures $)$?

Solution $\binom{18}{6,8,2,2}=\frac{18!}{6!8!2!2!}$

Couple Seat

In how many ways can 6 people be seated in a row if there are 3 married couples and each couple must sit together? (Write answer in integer.)

```
Answer = number (3 significant figures)
(2)
```

\section*{| Save $\&$ Grade | Save only |
| :--- | :--- |}

Solution linear ordering of couples $=3$!

$$
\text { ordering for each couple }=2!
$$

$$
\Rightarrow \quad 3!2!2!2!=48
$$

Friends and Party

A person has 11 friends, of whom 4 will be invited to a party.
How many choices are there if 2 of the friends are feuding and will not attend together?
Write only integer answer.

```
Answer= number (3 significant figures)


Friends and Party

A person has 7 friends, of whom 5 will be invited to a party.
How many choices are there if 2 of the friends will only attend together?
Write only integer answer.
```

Answer= number (3 significant figures)
(2)

```

Solution The two both invited \(=1 \cdot\binom{5}{3}\)
The two both not invited \(=\binom{5}{5}\)
\(\Rightarrow \quad\binom{5}{3}+\binom{5}{5}=11\).

Course Selection

To fulfill the requirements for a certain degree, a student can choose to take any 7 out of a list of 21 courses, with the constraint that at least 1 of the 7 courses must be a Mathemetics course.

Suppose that 7 of the 21 courses are Mathemetics courses.
How many choices are there for which 7 courses to take?
Answer = number (3 significant figures)

Solution
Total \# of ways \(=\binom{21}{7}\)
not choose Math \(=\binom{14}{7}\)
\[
\Rightarrow \quad\binom{21}{7}-\binom{14}{7}
\]```

