Midterm 3 Lecture Review Activity, Math1554

1. Indicate **true** if the statement is true, otherwise, indicate **false**.

	true	false
a) If S is a two-dimensional subspace of \mathbb{R}^{50} , then the dimension of S^{\perp} is 48. $d_{1m}(\varsigma^{\dagger}) + d_{im}(\varsigma^{\pm}) = d_{im}(\mathbb{R}^{50})$	Ø	0
b) An eigenspace is a subspace spanned by a single eigenvector. $\mathcal{N}_{ul}(A - \lambda I)$	\bigcirc	\otimes
c) The $n \times n$ zero matrix can be diagonalized.	\bigotimes	0
d) A least-squares line that best fits the data points $(0, y_1), (1, y_2), (2, y_3)$ is unique for any values y_1, y_2, y_3 .	\bigotimes	0
2. If possible, give an example of the following. $\begin{pmatrix} I \\ O \end{pmatrix}$	0 ()	ک م
2.1) A matrix, A, that is in echelon form, and dim $((\text{Row}A)^{\perp}) = 2$, dim	n ((Co	$\left A \right ^{\perp} = 1$
$R_{\text{ou}}(A)^{\perp} = Col(A^{\intercal})^{\perp} = N_{\text{ou}}(A^{\intercal})^{\intercal} = N_{\text{ou}}(A^{\intercal})$		
$din(Rau(A)^2) = din(Nu(A)) = \# \text{ of free}$	vov v	riables 1
det(A) = 0		0 0 0 0
2.2) A singular 2×2 matrix whose eigenspace corresponding to eigenv	alue λ	= 2 is the line
$x_1 = 2x_2$. The other eigenspace of the matrix is the x_2 axis.		
$\lambda_{i} = 2 \begin{bmatrix} 2 \\ i \end{bmatrix} \lambda_{2} = 0 \begin{bmatrix} 0 \\ i \end{bmatrix} A = \begin{bmatrix} 2 \\ i \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ i \end{bmatrix}$	\frown	$d_{im}(C_0(A))$
$A \simeq P \cdot D \cdot P^{-1}$	onk)	
= $det(A) = det(P, p, p^{-1}) = detP^{-1}$, $utD det(p^{-1}) = det(D) = det[\lambda_1^{0}] =$	JI-J2	dim (Row (A))
2.3) A subspace S, of \mathbb{R}^4 , that satisfies $\dim(S) = \dim(S^{\perp}) = 3$.	. n	ACRM
(ΓP)	R _	
N = 1 =		$C_{ol}(A) \in \mathbb{R}^{m}$
	4	$Row(A) \in \mathbb{R}^{n}$
$A \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	=0	$lom (Col(A)^{\perp})$
2.4) A 2 \times 5 matrix, A, that is in KKEF. (Kow A) ⁻ is spanned by $\begin{bmatrix} 5\\1 \end{bmatrix}$).	$= n_0 - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{4}} \right)$
$\operatorname{Nul}(A)$	- 1	- madim (con)
	Ot.	in (Ros (4)))
		= n - dim(ray)

 $A\vec{x} = \vec{b}$ $A \in \mathbb{R}^{m \times n}$ Least squares solution is unique @ Columns of A are trearly Indep. ATA is muentible ۹ • (0, y_1) (1, y_2) (2, y_3) • $y = \beta_0 + \beta_1 x$ $y_2 = \beta_0 + \beta_1 - 2$ $y_3 = \beta_0 + \beta_1 - 2$ $\begin{cases} y_1 \\ y_2 \\ y_3 \\ y_6 \\ y$ A Mique has lin. molpp l'east squares line. (not scalar multiple of each other)

3. Circle **possible** if the set of conditions are create a situation that is possible, otherwise, circle **impossible**. For the situations that are possible give an example.

4. Consider the matrix A.

$$A = \begin{pmatrix} 1 & -3 & 0 & 2\\ 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Construct a basis for the following subspaces and state the dimension of each space. $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$

4.1)
$$(\operatorname{Row} A)^{\perp} = \operatorname{Nol}(A)$$

4.2) $\operatorname{Col} A = \left\{ \left[\begin{smallmatrix} i \\ o \\ o \end{smallmatrix} \right], \left[\begin{smallmatrix} 6 \\ i \\ 0 \end{smallmatrix} \right] \right\}$
4.3) $(\operatorname{Col} A)^{\perp} = \left\{ \left[\begin{smallmatrix} 0 \\ i \\ 0 \end{smallmatrix} \right] \right\}$

A matrix
$$U \in \mathbb{R}^{n \times n}$$
 is orthogonal if columns are
orthonormal.
 U is orthogonal (i) $U^{T} \cdot U = \begin{pmatrix} u_{1}, u_{1} & u_{2}, u_{2} & \cdots & u_{n} & u_{n} \\ u_{1}, u_{1}, u_{2}, u_{2} & \cdots & u_{n} \\ \end{bmatrix}$
 $U = [u_{1}, u_{2}, \cdots , u_{n}]$
 $i = det (U^{T} \cdot U) = det (U^{T} \cdot \cdot det(U)) = det(U)^{2}$
 $det(U)$
 i
 $det(U)$
 i
 $det(U)$
 i
 $det(U)$
 i
 $det(U)$
 i
 $det(U)$
 i
 $det(U) = i$, -1
 ix
 i
 $det(U) = i$, -1
 ix
 $det(U) = i$
 $det(U) = i$
 $det(U) = -1$