Midterm 3 Lecture Review Activity, Math 1554

1. Indicate true if the statement is true, otherwise, indicate false.
a) If S is a two-dimensional subspace of \mathbb{R}^{50}, then the dimension of S^{\perp} is 48 .

$$
\operatorname{dim}\left(S_{\because}^{\prime}\right)+\operatorname{dim}\left(S^{\perp}\right)=\operatorname{dim}\left(\mathbb{R}^{50}\right)_{150}
$$

b) An eigenspace is a subspace ${ }^{2}$ spanned by a single eigenvector.

$$
* \operatorname{Nul}(A-\lambda I)
$$

c) The $n \times n$ zero matrix can be diagonalized.
d) A least-squares line that best fits the data points \& $\left(0, y_{1}\right),\left(1, y_{2}\right),\left(2, y_{3}\right)$ is unique for any values y_{1}, y_{2}, y_{3}.
2. If possible, give an example of the following.
2.1) A matrix, A, that is in echelon form, and $\operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right)=2, \operatorname{dim}\left((\operatorname{Col} A)^{\perp}\right)=1$

$$
\begin{aligned}
& \operatorname{Row}(A)^{\perp}=\operatorname{Col}\left(A^{\top}\right)^{\perp}=\operatorname{Nul}\left(\left(A^{\top}\right)^{\top}\right)=\operatorname{Nol}(A) \\
& \operatorname{dim}\left(\operatorname{Row}(A)^{\perp}\right)=\operatorname{dim}(\operatorname{Nul}(A))=\quad \text { of free variables } \\
& \begin{array}{c}
\operatorname{det}(A)=0 \\
\operatorname{not} \text { incuertibhe }
\end{array}
\end{aligned}
$$

2.2) A singular 2×2 matrix whose eigenspace corresponding to eigenvalue $\lambda=2$ is the line $x_{1}=2 x_{2}$. The other eigenspace of the matrix is the x_{2} axis.

$$
\begin{aligned}
& \text { 2.3) A subspace } S \text {, of } \mathbb{R}^{4} \text {, that satisfies } \operatorname{dim}(S)=\operatorname{dim}\left(S^{\perp}\right)=3 \text {. } \\
& \text { NiP }
\end{aligned}
$$

2.4) A 2×3 matrix, A, that is in RREF. $\frac{(\text { Row } A)^{\perp}}{K}$ is spanned by $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right) . \quad \begin{array}{r}\operatorname{dim}\left(\operatorname{Col}(A)^{\perp}\right) \\ =m-d i m\end{array}$

$$
\left[\begin{array}{lll}
1 & 0 & -2 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \begin{aligned}
& \operatorname{Nul}(A) \\
&
\end{aligned} \quad \operatorname{dim}(\operatorname{dim}(A))\left(\operatorname{Row}(A)^{1}\right)
$$

$$
A \vec{x}=\vec{b} \quad A \in \mathbb{R}^{m \times n}
$$

Least squares solution is unique \Leftrightarrow Columns if A are linearly indep.
$\Leftrightarrow \quad A^{+} A$ is invertible

- $\left(0, y_{1}\right) \quad\left(1, y_{2}\right) \quad\left(2, y_{3}\right)$
- $y=\beta_{0}+\beta_{1} x$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
y_{1}=\beta_{0}+\beta_{1}-0 \\
y_{2}=\beta_{0}+\beta_{1}-1 \\
y_{0}=\underbrace{\beta_{0}+\beta_{1}-2}
\end{array}\right. \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{0}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]}
\end{aligned}
$$

unique
least squares line.
has lin. Tndep columns (not scalar multiple of each otter)
3. Circle possible if the set of conditions are create a situation that is possible, otherwise, circle impossible. For the situations that are possible give an example.
3.1) A is $n \times n, A \vec{x}=A \vec{y}$ for a particular $\vec{x} \neq \vec{y}, \vec{x}$ and \vec{y} are in \mathbb{R}^{n}, and $\operatorname{dim}\left((\text { Row } A)^{\perp}\right) \neq 0$.

impossible

3.2) A is $n \times n, \lambda \in \mathbb{R}$ is an eigenvalue of A, and $\operatorname{dim}\left((\operatorname{Col}(A-\lambda I))^{\perp}\right)=0$. $\quad \operatorname{Nul}(A)=204$
possible
 $\operatorname{dim}(\operatorname{Nal}(A)) \geq 0$
π
A is $9-1$
3.3) $\operatorname{proj}_{\vec{v}} \vec{u}=\operatorname{proj}_{\vec{u}} \vec{v}, \vec{v} \neq \vec{u}$, and $\vec{u} \neq \overrightarrow{0}, \vec{v} \neq \overrightarrow{0}$.
impossible 1)

$$
A_{x}=A_{y}
$$

Top hes $x=y$.
4. Consider the matrix A.

$$
A=\left(\begin{array}{cccc}
1 & -3 & 0 & 2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Construct a basis for the following subspaces and state the dimension of each space.
4.1) $(\operatorname{Row} A)^{\perp}=\operatorname{Nul}(A)$
4.2) $\operatorname{Col} A=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}6 \\ 1 \\ 0\end{array}\right]\right\}$
$\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 3 \\ 1\end{array}\right]\right\}$
4.3) $(\operatorname{Col} A)^{\perp}$

$$
=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

A matrix $V \in \mathbb{R}^{n \times n}$ is orthogonal if Columns are orthonormal.
U is orthogral $\quad \Leftrightarrow \quad U^{\top} \cdot U=\left(\begin{array}{ccc}u_{1} \cdot u_{1}^{\prime \prime} & u_{1} \cdot u_{2}^{=} & \cdots \\ u_{2} \cdot u_{1} \cdot u_{n} & u_{2} \cdot u_{2}^{-1} & \cdots \cdot \\ u_{0} \cdot u_{n} \\ & & \ddots\end{array}\right]$

$$
\begin{aligned}
& U=\left[u_{1}, u_{2}, \cdots, u_{n}\right] \\
& =I \\
& 1=\operatorname{det}\left(U^{\top} \cdot U\right)=\operatorname{det}\left(U^{\top}\right) \cdot \operatorname{det}(U)=\operatorname{det}(U)^{2} \\
& \operatorname{det}(t)) \\
& \Rightarrow \quad \operatorname{det}(t)=1,-1
\end{aligned}
$$

Ex $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ orthonormal
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad$ orthogonal matrix
$\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=1 \quad \operatorname{det}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=-1$

