MATH 461 MIDTERM 2 PRACTICE

1. EXAM INFO

- (1) Time and Place: April 13, in class (1–1:50pm).
- (2) Coverage: Sections 5.1-7, 6.1-7 (up to material covered in Apr 6 class)
- (3) No book or notes are allowed. Using calculator is okay.
- (4) **Types of problems** may include:
 - (a) Stating definitions
 - (b) Write the statements and give proofs for theorems (or principles) covered in class
 - (c) True and False
 - (d) Giving examples
 - (e) Computations for concrete examples

2. Review

2.1. Continuous Random Variables.

- (1) Definition of continuous RVs
- (2) Relation between Density and Distribution
- (3) Expectation, Variance, and Expectation of a function of RV.
- (4) Uniform $X \sim \text{Unif}(a, b)$
 - (a) $\mathbb{E}[X] = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- (5) Normal $X \sim N(\mu, \sigma^2)$
 - (a) $\mathbb{E}[X] = \mu$, $\operatorname{Var}(X) = \sigma^2$.
 - (b) $X = \sigma Z + \mu$ for $Z \sim N(0, 1)$.
 - (c) $\Phi(x) = \mathbb{P}(X \le x), \Phi(x) = 1 \Phi(-x).$
 - (d) Normal approximation to binomial.
- (6) Exponential $X \sim \text{Exp}(\lambda)$
 - (a) $\mathbb{E}[X] = \frac{1}{\lambda}$, $\operatorname{Var}(X) = \frac{1}{\lambda^2}$.
 - (b) Memoryless property
- (7) Gamma $X \sim \text{Gamma}(\alpha, \lambda)$
 - (a) $\mathbb{E}[X] = \frac{\alpha}{\lambda}$, $\operatorname{Var}(X) = \frac{\alpha}{\lambda^2}$.
 - (b) Relation to Poisson

2.2. Jointly Distributed Random Variables.

(1) Joint distribution

- (a) Definitions of joint distribution, joint PMF, joint density.
- (b) Definition of jointly continuous RVs.
- (c) Marginal distribution, marginal densities.
- (d) Definition of Independent RVs.
- (2) Independent sum: Let *X*, *Y* be independent jointly continuous RVs.
 - (a) $F_{X+Y}(t) = \int F_X(t-y) f_Y(y) \, dy.$
 - (b) $f_{X+Y}(t) = \int f_X(t-y) f_Y(y) \, dy.$
- (3) Conditional distribution
 - (a) Conditional PMF: If $p_Y(y) \neq 0$, then $p_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{p(x,y)}{p_Y(y)}$.
 - (b) Conditional PDF: If $f_Y(y) \neq 0$, then $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$.

3. PRACTICE PROBLEMS

Q1) The random variable *X* ha sthe density

$$f(x) = \begin{cases} ax + bx^2, & 0 < x < 1\\ 0, & \text{otherwise.} \end{cases}$$

If $\mathbb{E}[X] = 0.6$, find $\mathbb{P}(X < \frac{1}{2})$ and $\operatorname{Var}(X)$.

- Q2) Your company must make a sealed bid for a construction project. If you succeed in winning the contract (by having the lowest bid), then you plan to pay another firm \$100,000 to do the work. If you believe that the minimum bid (in thousands of dollars) of the other participating companies can be modeled as the value of a random variable that is uniformly distributed on (70, 140), how much should you bid to maximize your expected profit?
- Q3) The life of a certain type of automobile tire is normally distributed with mean 34,000 miles and standard deviation 4000 miles.
 - (a) What is the probability that such a tire lasts more than 40,000 miles?
 - (b) What is the probability that it lasts between 30,000 and 35,000 miles?
 - (c) Given that it has survived 30,000 miles, what is the conditional probability that the tire survives another 10,000 miles?
- Q4) At a certain bank, the amount of time that a customer spends being served by a teller is an exponential random variable with mean 5 minutes. If there is a customer in service when you enter the bank, what is the probability that he or she will still be with the teller after an additional 4 minutes?
- Q5) Let *X* be a random variable with density

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad -\infty < x < \infty.$$

Find the density of 1/X.

Q6) The joint probability mass function of the random variables X, Y, Z is

$$p(1,2,3) = p(2,1,1) = p(2,2,1) = p(2,3,2) = \frac{1}{4}.$$

Find $\mathbb{E}[XYZ]$ and $\mathbb{E}[XY + YZ + ZX]$.

Q7) Let *X* and *Y* be continuous random variables with joint density function

$$f(x,y) = \begin{cases} \frac{x}{5} + cy, & 0 < x < 1, 1 < y < 5, \\ 0, & \text{otherwise.} \end{cases}$$

Find *c* and $\mathbb{P}(X + Y > 3)$. Are *X*, *Y* independent?

- Q8) Consider two components and three types of shocks. A type 1 shock causes component 1 to fail, a type 2 shock causes component 2 to fail, and a type 3 shock causes both components 1 and 2 to fail. The times until shocks 1, 2, and 3 occur are independent exponential random variables with respective rates λ_1 , λ_2 , and λ_3 . Let X_i denote the time at which component *i* fails, i = 1, 2. Find $\mathbb{P}(X_1 > s, X_2 > t)$.
- Q9) A model proposed for NBA basketball supposes that when two teams with roughly the same record play each other, the number of points scored in a quarter by the home team minus the number scored by the visiting team is approximately a normal random variable with mean 1.5 and variance 6. In addition, the model supposes that the point differentials for the four quarters are independent. Assume that this model is correct.
 - (a) What is the probability that the home team wins?
 - (b) What is the conditional probability that the home team wins, given that it is behind by 5 points at halftime?
 - (c) What is the conditional probability that the home team wins, given that it is ahead by 5 points at the end of the first quarter?
- Q10) Let *X* and *Y* be independent uniform (0, 1) random variables.
 - (a) Find the joint density of U = X, V = X + Y.
 - (b) Compute the density function of V.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *E-mail address:*daesungk@illinois.edu

Name	PMF or PDF	Mean	Variance
Ber(p)	$\mathbb{P}(X=1) = p, \mathbb{P}(X=0) = 1 - p$	p	p(1-p)
Bin(<i>n</i> , <i>p</i>)	$\binom{n}{x} p^x (1-p)^{n-x}$ for $x = 0, 1, \dots, n$	np	np(1-p)
Geom(p)	$p(1-p)^{x-1}$ for $x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
NegBin(r, p)	$\binom{x-1}{r-1}p^r q^{x-r}$ for $x = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
HyperGeom(N, S, n)	$\frac{\binom{S}{n-S}\binom{N-S}{n-x}}{\binom{N}{n}} \text{ for } \max\{0, n-N+S\} \le x \le \min\{n, S\}$	$\frac{nm}{N}$	$n \cdot \frac{S}{N} \cdot \left(1 - \frac{S}{N}\right) \cdot \frac{N-n}{N-1}$
Poisson(λ)	$\frac{e^{-\lambda}\lambda^x}{x!}$ for $x = 0, 1, \dots$	λ	λ
Uniform(a, b)	$\frac{1}{b-a}$ for $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal(μ, σ^2)	$\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/2\sigma^2}$ for $x \in (-\infty,\infty)$	μ	σ^2
$Exp(\lambda)$	$\lambda e^{-\lambda x}$ for $x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma (a, λ)	$rac{\lambda^a x^{a-1} e^{-\lambda x}}{\Gamma(a)}$ for $x > 0$	$\frac{a}{\lambda}$	$rac{a}{\lambda^2}$

TABLE 1. Table of Important Distributions to be provided in the Exams.

Geometric series	$\sum_{k=0}^{N} ap^{k} = \frac{a(1-p^{N+1})}{1-p} \text{ for } p \in (0,1)$
Power series for e^x	$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$
Gamma function	$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$

TABLE 2. Table of formulas to be provided in the Exams.