Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors
Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example A^{k}, for large k.

But: multiplying two $n \times n$ matrices requires roughly n^{3} computations. Is there a more efficient way to compute A^{k} ?

Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices
2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix.
2. Apply diagonalization to compute matrix powers.

Similar Matrices
Definition
Two $n \times n$ matrices A and B are similar if there is a matrix P so that $A=P B P^{-1}$.

Theorem
If A and B similar, then they have the same characteristic polynomial.

If time permits, we will explain or prove this theorem in lecture. Note:

- Our textbook introduces similar matrices in Section 5.2, but doesn't have exercises on this concept until 5.3.
- Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

$$
A=P \cdot B \cdot P_{2}^{-1}=0
$$

$$
\begin{array}{cc}
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=B \quad \text { Not similar. } \\
\phi_{A}=\lambda^{2} & \phi_{B}=\lambda^{2}
\end{array}
$$

Section 5.2 Slide 21

$$
I=P \cdot I \cdot P^{-1}
$$

proof

$$
\begin{aligned}
\phi_{A}(\lambda) & =\operatorname{det}(A-\lambda I), \quad A=P \cdot B \cdot P^{-1} \\
& =\operatorname{det}\left(P B P^{-1}-\lambda \cdot P \cdot I \cdot P^{-1}\right) \\
& =\operatorname{det}\left(P \cdot(B-\lambda I) \cdot P^{-1}\right) \\
& =\operatorname{det}(P) \cdot \operatorname{det}(B-\lambda I) \cdot \operatorname{det}\left(P^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}(P) \cdot \operatorname{det}\left(P^{-1}\right) \phi_{B}(\lambda) \\
& =\operatorname{let}^{\left(\frac{P \cdot P^{-1}}{11}\right.}=1 \\
& =\phi_{B}(\lambda)
\end{aligned}
$$

Additional Examples (if time permits)

1. True or false.
a) If A is similar to the identity matrix, then A is equal to the identity matrix.
b) A row replacement operation on a matrix does not change its eigenvalues.
2. For what values of k does the matrix have one real eigenvalue with algebraic multiplicity 2 ?

$$
\left(\begin{array}{cc}
-3 & k \\
2 & -6
\end{array}\right)
$$

Diagonal Matrices

square

A^{2} matrix is diagonal if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad[2], \quad I_{n}, \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

We'll only be working with diagonal square matrices in this course.

Powers of Diagonal Matrices

If A is diagonal, then A^{k} is easy to compute. For example,

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
3 & 0 \\
0 & 0.5
\end{array}\right) \\
A^{2} & =\left(\begin{array}{ll}
3 & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
\theta & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
3^{2} & 0 \\
0 & \left(\frac{1}{2}\right)^{2}
\end{array}\right) \\
A^{k} & =\left(\begin{array}{cc}
3^{k} & 0 \\
0 & \left(\frac{1}{2}\right)^{k}
\end{array}\right)
\end{aligned}
$$

Note A, B = diagonal Is $A B$ diagonal? Yes, But what if A is not diagonal?
(1) A is similar to diagonal.

$$
\begin{gathered}
A \text { is similar to diagonal. } \\
A=P \cdot P^{-1} \\
\text { diagonal }
\end{gathered} \quad=\left[\begin{array}{cc}
a_{1} b_{1} & 0 \\
a_{2} b_{2} & \\
0 & a_{o n} b_{n}
\end{array}\right]
$$

Section 5.3 Slide 26 diagonal e

$$
\begin{aligned}
{\left[\begin{array}{ccc}
a_{1} & \ddots & 0 \\
0 & \ddots & a_{n}
\end{array}\right] } & {\left[\begin{array}{ccc}
b_{1} & 0 \\
- & 0 \\
0 & \ddots & b_{n}
\end{array}\right] } \\
& =\left[\begin{array}{ccc}
a_{1} b_{1} & a_{2} b_{2} & \\
0 & & a_{n} b_{n}
\end{array}\right]
\end{aligned}
$$

Section $5.3-$ Side 26 dian

$$
\begin{aligned}
A^{2} & =\left(P D P^{-1}\right)\left(P \cdot D \cdot P^{-1}\right)=P D \cdot\left(P \cdot P^{-1}\right) \cdot D P^{-1} \\
& =P \cdot \underbrace{D \cdot D} P^{-1}=P \cdot D^{2} P^{-1} \\
A^{k} & =P \cdot D^{k} \cdot P^{-1}
\end{aligned}
$$

Q: When is this possible?
(2)

$$
\begin{array}{ll}
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) & A^{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
A^{k}=\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right)
\end{array}
$$

Nete If A, B uppor triangutar,
So is $A-B$ (Exereise)
Goal: $A=P \cdot D \cdot P^{-1}, D:$ diagonal.
Use eigenvalues \& eigenvectors.

$$
A \in \mathbb{R}^{n \times n}
$$

Suppose $\left.\right|_{v_{1}} ^{\lambda_{1}, \lambda_{2}, \cdots, v_{n}} \begin{aligned} & \text { 畆 } \\ & \\ & \\ & \end{aligned}$

$$
\begin{aligned}
& \left\{\begin{aligned}
& A v_{1}=\lambda_{1} v_{1} \\
& A v_{2}=\lambda_{2} v_{2} \\
& \vdots \\
& A v_{n}=\lambda_{n} v_{n}
\end{aligned}\right. \\
& A \cdot \underbrace{\left[\begin{array}{cccc}
1 & 1 & & 1 \\
v_{1} & v_{2} & \cdots & v_{n} \\
1 & 1 & & 1
\end{array}\right]}_{=P}=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \cdots & \lambda_{n} v_{n} \\
1 & 1 & & 1
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{cccc}
1 & 1 & & 1 \\
v_{1} & v_{2} & \cdots & v_{n} \\
1 & 1 & & 1
\end{array}\right]}_{=P} \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \lambda_{2} & 0 \\
0 & \ddots & -\lambda_{n}
\end{array}\right]}_{=D} \text {. }
\end{aligned}
$$

$A P=P D$. If P is invertible.

$$
A=P D P^{-1}
$$

Diagonalization

Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is diagonalizable if it is similar to a diagonal matrix, D. That is, we can write

$$
A=P D P^{-1}
$$

Theorem
If A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors.

Note: the symbol \Leftrightarrow means " if and only if ".
Also note that $A=P D P^{-1}$ if and only if

$$
A=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} \cdots \vec{v}_{n}
\end{array}\right]^{-1}
$$

where $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in order).

Q: When we have n lin. indep. eigenvectors

Example 1

Diagonalize if possible.

$$
\left(\begin{array}{cc}
2 & 6 \\
0 & -1
\end{array}\right)
$$

$\begin{array}{cc}\text { trace let } \\ \delta & \downarrow\end{array}$
(1) Eigenvalues

$$
\begin{aligned}
& \phi_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}-\left(\begin{array}{c}
d \\
\\
\end{array} \lambda^{2}(-1)\right) \lambda+(-2) \\
& \lambda^{2}-\lambda-2=0 \quad \therefore \lambda=2,-1 .
\end{aligned}
$$

(2)

$$
\left.\begin{array}{l}
\lambda=2: \quad E_{2}=\operatorname{Nul}(A-2 I) \\
A-2 I=\left(\begin{array}{cc}
0 & 6 \\
0 & -3
\end{array}\right) \rightarrow\left(\frac{0}{\theta} 1\right. \\
0
\end{array}\right) \quad 0 \cdot x+1-y \Rightarrow \begin{aligned}
& \therefore y=0 . \\
& \therefore \quad\left[\begin{array}{l}
x \\
y=
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]=x \quad v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { in. indef }
\end{aligned}
$$

(3) $\lambda=-1: \quad A+I=\left(\begin{array}{ll}3 & 6 \\ 0 & 0\end{array}\right) \rightarrow\left(\frac{1}{2}() / x+2 y=0\right.$

Section $5.3 \quad$ Slide 29

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 y \\
y
\end{array}\right]=y\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]} \\
A=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{k}}
\end{gathered}
$$

Special case
Distinct Eigenvalues all algebraic multiplicites are 1
Theorem
If A is $n \times n$ and has n distinct eigenvalues, then A is diagonalizable.

Why does this theorem hold?
The

$$
\begin{array}{ccc}
\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \\
1 & 1 \\
v_{1} & v_{2} & \cdots \\
v_{n}
\end{array}
$$

distinct eigenvalues
$\Rightarrow \quad\left\{v_{1}, \cdots, v_{n}\right\}$ linearly independent.
Is it necessary for an $n \times n$ matrix to have n distinct eigenvalues for it to be diagonalizable?
Sketchy of Proof Assume $(k-1)$ distinct eigemuate \Rightarrow in. index.
Goal: k distinct \Rightarrow lin.indep

Section $5.3 \quad$ Slide 31

$$
\begin{aligned}
& \lambda_{1}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}\right)=0 \quad \text { WAN }: a_{1}=a_{2}=\cdots=a_{k}=0 \\
& A\left(a_{1} v_{1}+\cdots v_{k}\right)=0 \\
& \left.a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{2}\right) v_{2}+\cdots+a_{k} \lambda_{k} v_{k}=0 \\
& -\left(a_{1} \lambda_{1} v_{1}+a_{2}\left(\lambda_{1}\right) v_{2}+\cdots+a_{k} \lambda_{1} v_{k}=0\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{2}\left(\lambda_{2}-\lambda_{1}\right) \cdot v_{2}+a_{3}\left(\lambda_{3}-\lambda_{1}\right) v_{3}+\cdots+a_{k}\left(\lambda_{k}-\lambda_{1}\right) v_{k}=0 \\
\Rightarrow & a_{2} \frac{\left(\lambda_{2}-\lambda_{1}\right)}{\frac{\pi}{0}}=\cdots=a_{k} \frac{\left(\lambda_{k}-\lambda_{1}\right)}{t_{0}}=0 \\
\Rightarrow \quad & a_{2}=\cdots=a_{k}=0 \\
\Rightarrow & a_{1} v_{1}^{\neq 0}=0
\end{aligned}
$$

Recall
$A \in \mathbb{R}^{n \times n}$ is diagonolizable
\Leftrightarrow There exist an invertible matrix P and a diagonal matrix D such that $A=P \cdot D \cdot P^{-1}$

$$
\left(A^{k}=P D^{k} P^{-1}\right)
$$

Suppose $\lambda_{1}, \lambda_{2}, \cdots \cdot \lambda_{n}$ are eigenvalue with eigenvecitios $v_{1}, v_{2} ; \cdots, v_{n}$, then

$$
\begin{aligned}
& A \cdot\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} & v_{1} & \lambda_{2} v_{2} & \ldots
\end{array} \lambda_{n} v_{n}\right] \\
& P \text { P }=[\underbrace{\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots \cdot v_{n}
\end{array}\right]}_{P} \cdot \underbrace{\left[\begin{array}{lll}
\lambda_{1} & & O \\
\lambda_{2} & & \\
0 & \cdots & \lambda_{n}
\end{array}\right]}_{D} \\
& A P=P D .
\end{aligned}
$$

A is diagonal table \Leftrightarrow This P is invertible.
\Leftrightarrow We have in linearly iralepentent eigenvectors.

If $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are all distinct, $\left\{v_{1}, \cdots, v_{n}\right\}$ is finearly independent, which leads to A is diagondizable.
Today's Question: What it Not Distinct.

$\begin{aligned} & E_{1}=\operatorname{Nal}\left(A-\lambda_{1} I\right) \\ & E_{2}=\operatorname{Nul}\left(A-\lambda_{2} I\right) \\ & \vdots \\ & \operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{din}\left(E_{6}\right)+\operatorname{dim}\left(E_{2}\right)+\cdots\end{aligned}$

n

Non-Distinct Eigenvalues

Theorem. Suppose

- A is $n \times n$
- A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}, k \leq n$
- $a_{i}=$ algebraic multiplicity of λ_{i}
- $d_{i}=$ dimension of λ_{i} eigenspace ("geometric multiplicity")

Then

1. $d_{i} \leq a_{i}$ for all i
2. A is diagonalizable $\Leftrightarrow \Sigma d_{i}=n \Leftrightarrow d_{i}=a_{i}$ for all i
3. A is diagonalizable \Leftrightarrow the eigenvectors, for all eigenvalues, together form a basis for \mathbb{R}^{n}.

Example 2
Diagonalize if possible.

$$
A=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right)
$$

$$
\text { trace }=\operatorname{sum}_{\text {diagonal }}
$$

(1) Eigenvalues:

$$
\begin{aligned}
\phi(\lambda) & =\operatorname{det}(A-\lambda I)=\lambda^{2}-(3+3) \lambda+9 \\
& =\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}=0 \quad \operatorname{det}(A)
\end{aligned}
$$

$\lambda=3$ with alg. multi $=2$.
(2) Eigenspace $\quad E_{3}=\operatorname{Nul}(A-3 I)$

$$
\begin{gathered}
A-3 I=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \quad y=0 \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]=x\left\{\begin{array}{l}
1 \\
0
\end{array}\right] \\
\operatorname{dim}\left(E_{z}\right)=\operatorname{dim}(\operatorname{Nu}(A-3 I))=1
\end{gathered}
$$

Section 5.3 side 30 A TS NOT atagonalirable.

$$
\begin{aligned}
& \left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right)^{k}=\left(3 \cdot\left(\begin{array}{cc}
1 & \frac{1}{3} \\
0 & 1
\end{array}\right)\right)^{k}=3^{k} \cdot\left(\begin{array}{cc}
1 & \frac{1}{3} \\
0 & 1
\end{array}\right)^{k}=3^{k} \cdot\left(\begin{array}{ll}
1 & \frac{k}{3} \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)^{k}=\left(\begin{array}{cc}
1 & a k \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Example 3

The eigenvalues of A are $\lambda=3,1$. If possible, construct P and D such that $A P=P D$.
$\lambda=1$

$$
A=\left(\begin{array}{ccc}
7 & 4 & 16 \\
2 & 5 & 8 \\
-2 & -2 & -5
\end{array}\right)
$$

$E_{1}=\operatorname{Nul}(A-I):$

$$
\begin{aligned}
& A-I=\left(\begin{array}{ccc}
6 & 4 & 16 \\
2 & 4 & 8 \\
-2 & -2 & -6
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
3 & 2 & 8 \\
1 & 2 & 4 \\
1 & 1 & 3
\end{array}\right) \mathbb{R} \\
& \rightarrow\left(\begin{array}{ccc}
1 & 2 & 4 \\
3_{s_{0}} & 2 & 8 \\
1_{j_{0}} & 1 & 3
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & -4 & -4 \\
0 & -1 & -1
\end{array}\right) \\
& \text { Section 5.3 Slide 33 } \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
\left.x_{1}+2-x_{3}\right)=0 \\
\left.x_{2}+x_{3}\right)=0
\end{array} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right] . \operatorname{dim}\left(E_{1}\right)=1 .}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\lambda=3 \\
A-3 I
\end{array}=\left(\begin{array}{ccc}
4 & 4 & 16 \\
2 & 2 & 8 \\
-2 & -2 & -8
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & 1 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& {\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{cc}
-x_{2}-4 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]} \\
& \operatorname{dim}\left(E_{3}\right)=\operatorname{dim}(A-3 I)=2 \\
& \operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{3}\right)=1+2=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)
\end{aligned}
$$

$\Rightarrow \quad A$ is diagonalizable, $A=P D P^{-1}$

$$
\phi(\lambda)=\operatorname{det}(A-\lambda I)
$$

$\left.\operatorname{dim}\left(E_{1}\right)=1\right) \&$ ceom. matsi:
$\left.\operatorname{dim}\left(E_{2}\right)=2\right)$
minimal poly.

Additional Example (if time permits)
Note that

$$
\vec{x}_{k}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \vec{x}_{k-1}, \quad \vec{x}_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k=1,2,3, \ldots
$$

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the $n^{t h}$ number in this sequence.

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right] \underset{f}{=}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad x_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
1+2
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
2
\end{array}\right] \rightarrow\left[\begin{array}{l}
2 \\
3
\end{array}\right] \rightarrow\left[\begin{array}{l}
3 \\
5
\end{array}\right] \rightarrow\left[\begin{array}{l}
5 \\
8
\end{array}\right] \rightarrow\left[\begin{array}{c}
8 \\
13
\end{array}\right] \rightarrow \ldots}
\end{aligned}
$$

Q: Find $x_{k}=\underbrace{\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{k}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Section 5.3 Slide 34 $\quad A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
(1) $\phi(\lambda)=\lambda^{2}-\lambda-1=0, \quad \lambda=\frac{1 \pm \sqrt{5}}{2}$ distinct 2 eigencahus $\Rightarrow A$ is diogonalizable.
(2) $A-\left(\frac{1+\sqrt{5}}{2}\right) I=\left[\begin{array}{cc}-\left(\frac{1+\sqrt{5}}{2}\right) & 1 \\ 1 & \left(\frac{1-\sqrt{5}}{2}\right)_{\lambda_{2}}\end{array}\right]=\left[\begin{array}{cc}\left.-\lambda_{1}\right)^{-\frac{1}{\lambda_{2}}} & 1 \\ 1 & \lambda_{2}\end{array}\right]$

$$
\begin{aligned}
& \underline{\lambda_{1}-\lambda_{2}}=\left(\frac{1+\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right)=\frac{1^{2}-(\sqrt{5})^{2}}{4}=-1 \\
& \lambda_{1}=-\frac{1}{\lambda_{2}} \\
& x+\lambda_{2} y=0 \\
& \left(A-\lambda_{1} I\right)=\left[\begin{array}{cc}
-\lambda_{1} & 1 \\
1 & \lambda_{2}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & \lambda_{2} \\
1 & \lambda_{2} \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-\lambda_{2} y \\
y
\end{array}\right]=y-\left[\begin{array}{c}
-\lambda_{2} \\
1
\end{array}\right] \text {. }} \\
& \left(A-\lambda_{2} I\right)=A-\left(\frac{1-\sqrt{5}}{2}\right) I=\left[\begin{array}{cc}
\stackrel{-\lambda_{2}}{\underline{ }} & 1 \\
1 & \lambda_{1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{\lambda_{1}} & 1 \\
\hline 1 & \lambda_{1}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & \lambda_{1} \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=y \cdot\left[\begin{array}{l}
\lambda_{1} \\
1
\end{array}\right] \quad \begin{array}{l}
\lambda_{1}=\frac{1}{2}(1+\sqrt{5}) \\
\lambda_{2}=\frac{1}{2}(1-\sqrt{5})
\end{array}} \\
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{k}=\left[\begin{array}{cc}
-\lambda_{2} & -\lambda_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{k} & 0 \\
0 & \lambda_{2}^{k}
\end{array}\right]\left[\begin{array}{cc}
-\lambda_{2} & -\lambda_{1} \\
1 & 1
\end{array}\right]^{-1}}
\end{aligned}
$$

(3)

Chapter 5 : Eigenvalues and Eigenvectors
 5.5: Complex Eigenvalues

Topics and Objectives

Topics

1. Complex numbers: addition, multiplication, complex conjugate
2. Complex eigenvalues and eigenvectors.
3. Eigenvalue theorems

Learning Objectives

1. Use eigenvalues to determine identify the rotation and dilation of a linear transform.
2. Rotation dilation matrices.
3. Find complex eigenvalues and eigenvectors of a real matrix.
4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?

Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square roots of negative numbers. For example:

$$
x^{2}+1=0
$$

The roots of this equation are:

$$
\frac{x^{2}=-1}{x= \pm \sqrt{-1}= \pm i} \quad i=\sqrt{-1}
$$

We usually write $\sqrt{-1}$ as i (for "imaginary").

Addition and Multiplication

The imaginary (or complex) numbers are denoted by \mathbb{C}, where,$z+\omega$

$$
\mathbb{C}=\{a+b i \mid a, b \text { in } \mathbb{R}\}
$$

We can identify \mathbb{C} with $\mathbb{R}^{2}: \quad a+b i \leftrightarrow(a, b)$
Q: geometric meaning?

We can add and multiply complex numbers as follows:

$$
\begin{aligned}
(\sqrt{2-3 i})+(-1+i) & =(2+(-1))+((-3)+1) i=\frac{1+(-2) i}{\text { Component-wis6 }} \\
(\sqrt{2-3 i)(-1+i)} & =2 \cdot(-1)+2 \cdot i+(-3 i) \cdot(-1)+(-3 i) \cdot i
\end{aligned} i^{2}=(\sqrt{-1})^{2}=-1 .
$$

Complex Conjugate, Absolute Value, Polar Form

$$
z=a+b i \quad w=c+d i
$$

We can conjugate complex numbers: $\overline{a+b i}=$ \qquad $a-6 i$ check.

Properties
(i) $\overline{(\bar{z})}=z$
(ii) $\overline{z+\omega}=\bar{z}+\bar{w}$
(iii) $\overline{z \cdot w}=\bar{z} \cdot \bar{w}$
(iv) If $\bar{z}=z$ then $z \in \mathbb{R}$ (v) $z+\bar{z} \in \mathbb{R}$,
(vi) $\quad z \cdot \bar{z}=(a+b i) \cdot(\overline{a+b i})=\left(a+b_{i}\right)\left(a-b_{i}\right)=a^{2}-\left(b_{i}\right)^{2}=a^{2}+b^{2} \geqslant 0$

The absolute value of a complex number: $|a+b i|=\sqrt{a^{2}+b^{2}}=\sqrt{z \cdot \bar{z}}$

$$
=\text { length of vector }
$$

We can write complex numbers in polar form: $a+i b=r(\cos \phi+i \sin \phi)$

Section 5.5 Slide 5

$a=r \cdot \cos \phi$
$b=r \cdot \sin \phi$
$a+b i=r \cos \phi+r \sin \phi \cdot i$

$$
=r \cdot(\cos \phi+i \cdot \sin \phi) .
$$

Complex Conjugate Properties

If x and y are complex numbers, $\vec{v} \in \mathbb{C}^{n}$, it can be shown that:

- $\overline{(x+y)}=\bar{x}+\bar{y}$
$\rightarrow \overline{A \vec{v}}=A \overline{\vec{v}}$
- $\operatorname{Im}(x \bar{x})=0$. Notation: $z=a+b i, \operatorname{Re}(z)=a, \operatorname{Im}(z)=b$.

Example True or false: if x and y are complex numbers, then

$$
\overline{(x y)}=\bar{x} \bar{y}
$$

$A \in \mathbb{R}^{n \times n}$ (all entries are real) $v \in \mathbb{C}^{n}$

$$
\begin{aligned}
\bar{A} & =\left[\begin{array}{cc}
\overline{a_{11}} & \overline{a_{12}} \\
\overline{a_{21}} & \ddots \\
\vdots & \ddots
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{11} & \cdots \\
\vdots & \ddots
\end{array}\right]=A
\end{aligned}
$$

Section 5.5 Slide 6

$$
\begin{aligned}
& \overline{A \cdot B}=\bar{A} \cdot \bar{B} \\
& \overline{A \cdot v}=\bar{A} \cdot \bar{v}=A \cdot \bar{v} \\
& \tau_{\text {real }}
\end{aligned}
$$

Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

$$
e^{i \phi}=\cos \phi+i \sin \phi \quad, \phi \in \mathbb{R}
$$

$$
\begin{aligned}
z & =r(\underbrace{\prime \prime} \sqrt{a^{2}+b^{2}}=|z| \\
& =|z| e^{i \phi} .
\end{aligned}
$$

Euler's Formula

Suppose z_{1} has angle ϕ_{1}, and z_{2} has angle ϕ_{2}.

$$
z_{1}=\left|z_{1}\right| \cdot e^{i \phi_{1}}
$$

The product $z_{1} z_{2}$ has angle $\phi_{1}+\phi_{2}$ and modulus $|z||w|$. Easy to remember using Euler's formula.

$$
z=|z| \mathrm{e}^{i \phi}
$$

The product $z_{1} z_{2}$ is:

$$
z_{3}=z_{1} z_{2}=\left(\left|z_{1}\right| \mathrm{e}^{i \phi_{1}}\right)\left(\left|z_{2}\right| e^{i \phi_{2}}\right)=\left|z_{1}\right|\left|z_{2}\right| \mathrm{e}^{i\left(\phi_{1}+\phi_{2}\right)}
$$

Recall

$$
\begin{gathered}
A \in \mathbb{R}^{n \times n} \longrightarrow \phi_{A}(\lambda)=\frac{\operatorname{det}(A-\lambda I)}{\text { degree } n}=0 \text { polynoritial in } \lambda . \text { char. Eon } \\
\\
\text { Roots of } \phi_{A}(\lambda)=0=\text { Eigenvalues. } \\
\Phi_{A}(\lambda)= \\
a_{0}, a_{1}, \lambda^{n}, a_{2}, \cdots, a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}
\end{gathered}
$$

Complex Numbers and Polynomials

Theorem: Fundamental Theorem of Algebra
Every polynomial of degree n has exactly n complex roots, counting multiplicity.

$$
\begin{aligned}
& \text { Roots } \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in \mathbb{C} \\
& \phi_{A}(\lambda)=a_{n} \cdot\left(\lambda-\lambda_{1}\right) \cdot\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
\end{aligned}
$$

Theorem

1. If $\lambda \in \mathbb{C}$ is a root of a real polynomial $p(x)$, then the conjugate $\bar{\lambda}$ is also a root of $p(x)$.
2. If λ is an eigenvalue of real matrix A with eigenvector \vec{v}, then $\bar{\lambda}$ is an eigenvalue of A with eigenvector \vec{v}.

$$
\phi_{A}(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1}+a_{n} \in \mathbb{R}+a_{0}
$$

Suppose $z^{\in \mathbb{C}}$ is a root, z is an- eigenencalue of A.
Section $5.5 \quad$ Slide 9

$$
\begin{gathered}
\phi_{A}(z)=0 \\
\overline{a_{n} z^{n}}+\overline{a_{n-1} z^{n-1}}+\cdots+\overline{a_{1-z}}+\overline{a_{0}}=\overline{0}=0 \\
\bar{a}_{n} \cdot \overline{\left(z^{n}\right)}+\overline{a_{n-1}} \cdot \overline{\left(z^{n-1} J+\cdots\right.} \cdot \overline{a_{1}} \cdot \bar{z}+\overline{a_{0}}=0 . \\
\phi_{A}(\bar{z})=a_{n} \cdot(\bar{z})^{n}+a_{n-1}(\bar{z})^{n-1}+\cdots+a_{1} \cdot \bar{z}+a_{0}=0
\end{gathered}
$$

\bar{z} is a root of $\phi_{A}(\lambda)=0$. \bar{z} is an eigen-ablue of A.

Recall

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}, \quad i^{2}=-1 .
$$

$$
z=a+b i \quad \operatorname{Re}(z)=a, \quad \operatorname{In}(z)=b
$$

$$
\bar{z}=\overline{a+b i}=a-b i
$$

$$
\overline{z+w}=\bar{z}+\bar{w}
$$

$$
\overline{z w}=\bar{z} \cdot \bar{w}
$$

$$
\overline{A \cdot v}=\bar{A} \cdot \bar{v}=A \cdot \bar{v}
$$

if $A \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
& |z|=|a+b i|=\sqrt{a^{2}+b^{2}}=\sqrt{z \cdot \bar{z}} \\
& z=r \cdot e^{i \phi}=|z| \cdot e^{i \phi}=|z| \cdot(\cos \phi+i \cdot \sin \phi)
\end{aligned}
$$

Suppose λ is a complex eigenualue of $A \in \mathbb{R}^{n \times n}$ with exgervector $v \in \mathbb{G}^{n}$
then $\bar{\lambda}$ is an eigonvatue $\omega / \lambda \bar{v}$.

$$
\begin{aligned}
& A v=\overline{z \cdot v} \\
& A \cdot \bar{v}=\bar{z} \bar{v} \\
& \bar{A} \cdot \bar{v}=\bar{z} \cdot \bar{v} \\
& \uparrow \text { eigencuector. } \\
& z \text { : eigencalue w/ v } \\
& \bar{z} \text { : eigervention of } \bar{v}
\end{aligned}
$$

Example
real

Q1: Ate they all eigenvalues? Yes
7×7 matrix $\Rightarrow \phi_{A}(\lambda)$ is of degree c 7
$\Rightarrow \quad \phi_{A}(\lambda)=0 \quad$ has 7 roots with multiplicities
$\Rightarrow T$ eigenvovinas w/ mentiplicities
Qa: $\quad \phi_{A}(\lambda)=\operatorname{det}(A-\lambda I)$

Section $5.5 \quad$ Slide 10

$$
\begin{aligned}
= & (1 / 2)(\lambda-(-2))(\lambda-(4+i))(\lambda-(4-i)) \\
& (-1)^{7} \times(\lambda-(-4-i))(\lambda-(-4+i))(\lambda+i)(\lambda-i) \\
= & -(\lambda+2)\left(\lambda^{2}-8 \lambda+17\right)\left(\lambda^{2}+8 \lambda+17\right)\left(x^{2}+1\right)
\end{aligned}
$$

Q3: A is diagonatisable. why? $A=P \cdot D \cdot P^{-1}$

Example

The matrix that rotates vectors by $\phi=\pi / 4$ radians about the origin, and then scales (or dilates) vectors by $r=\sqrt{2}$, is

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

What are the eigenvalues of A ? Find an eigenvector for each eigenvalue.

Section 5.5 Slide 11

$$
T=\left[\begin{array}{ll}
T e_{1} & T e_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\begin{aligned}
& a^{2}+a^{2}=1 \quad a=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}} \\
& a^{2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& S=\left[\begin{array}{ll}
S_{e_{1}} & S e_{2}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right] \\
& A=S \cdot T=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
1 & 1
\end{array}\right] \\
& \phi_{A}(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A) \\
& =\lambda-(1+1) \lambda+(1-1-(-1)-1)=\lambda^{2}-2 \lambda+2=0 \\
& (\lambda-1)^{2}=-1 . \\
& \lambda-1=i \text { or }-i \quad\left[\begin{array}{ll}
0 & 0 \\
1 & -i
\end{array}\right] \\
& \lambda=9+i \text { or } 4-i \\
& A-(1+i) I=\left[\begin{array}{ll}
1-(1+i) & -1 \\
1 & 1-(1+i)
\end{array}\right]=\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right] \\
& x-i y=0 \quad x=i y \quad\left[\begin{array}{rr}
-i & -1 \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
i y \\
y
\end{array}\right]=y \cdot\left[\begin{array}{l}
i \\
1
\end{array}\right] \text {. }} \\
& \lambda=(1+i) \quad v_{1}=\left[\begin{array}{l}
i \\
1
\end{array}\right] \\
& \lambda=1-i \quad-\quad v_{2}=\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
i & -1 \\
1 & 1
\end{array}\right]=P \cdot D P^{-1}=\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1+i & 0 \\
0 & 1-i
\end{array}\right]\left[\begin{array}{cc}
a^{i} & -i \\
1 & 1
\end{array}\right]^{-1}}
\end{aligned}
$$

Example

The matrix in the previous example is a special case of this matrix:

$$
C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

Calculate the eigenvalues of C and express them in polar form.

$$
\left.\begin{array}{c}
\phi_{c}(\lambda)=\underbrace{\lambda^{2}-2 a \lambda+\left(a^{2}+b^{2}\right)}=0 \\
(\underbrace{\lambda-a)^{2}}=-4 \cdot b^{2} \\
\lambda-a
\end{array}\right)=b \cdot i \text { or }-b \cdot i .
$$

Ex $\left.\quad \begin{array}{c}5+7 i \\ 7\end{array}\right]$
Section 5.5 slide 13 : For any complex number $Z \in \mathbb{C}$, Is there a real' 2×2 matrix whose eigenculue io Z ? Yes $z \cdot I$

Example

Find the complex eigenvalues and an associated complex eigenvector for each eigenvalue for the matrix.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right) \\
& \Phi_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}-(1+3) \lambda+(3 \cdot 1-(-2)-1) \\
& =\frac{\lambda^{2}-4 \lambda}{}+\frac{J}{4+1}=0 \\
& (\lambda-2)^{2}=-1 \\
& \lambda-2=i \text { or }-i \\
& \lambda=2 \pm i \\
& A-(2+i) I=\left[\begin{array}{cc}
1-(2+i) & -2 \\
1 & z-(2+i)
\end{array}\right]=\left[\begin{array}{cc}
-1-i & -2 \\
11 & 1-i
\end{array}\right]
\end{aligned}
$$

Section 5.5 Slide 14

$$
\left.\begin{array}{rlrl}
x+(1-i) y & =0 & x=(i-1) y \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=y} & i-1 \\
i
\end{array}\right] n=v=\left[\begin{array}{c}
i-1 \\
1
\end{array}\right] .
$$

Section 6.1 : Inner Product, Length, and Orthogonality

Chapter 6: Orthogonality and Least Squares
Math 1554 Linear Algebra

Topics and Objectives

Topics

1. Dot product of vectors
2. Magnitude of vectors, and distances in \mathbb{R}^{n}
3. Orthogonal vectors and complements
4. Angles between vectors

Learning Objectives

1. Compute (a) dot product of two vectors, (b) length (or magnitude) of a vector, (c) distance between two points in \mathbb{R}^{n}, and (d) angles between vectors.
2. Apply theorems related to orthogonal complements, and their relationships to Row and Null space, to characterize vectors and linear systems.

Motivating Question

For a matrix A, which vectors are orthogonal to all the rows of A ? To the columns of A ?

The Dot Product

The dot product between two vectors, \vec{u} and \vec{v} in \mathbb{R}^{n}, is defined as

$$
\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Example 1: For what values of k is $\vec{u} \cdot \vec{v}=0$?

$$
\begin{gathered}
\vec{u}=\left(\begin{array}{c}
-1 \\
3 \\
k \\
2
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
4 \\
2 \\
1 \\
-3
\end{array}\right) \\
\left.\vec{u} \cdot \vec{v}=\left[\begin{array}{llll}
-1 & 3 & k & 2
\end{array}\right]\left[\begin{array}{c}
4 \\
2 \\
1 \\
-3
\end{array}\right]=4 \cdot(-1)+3 \cdot 2+k \cdot 1+2 k-3\right) \\
=k-4=0
\end{gathered}
$$

$$
\Rightarrow \quad k=4
$$

Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits linear properties.

Theorem (Basic Identities of Dot Product)

Let $\vec{u}, \vec{v}, \vec{w}$ be three vectors in \mathbb{R}^{n}, and $c \in \mathbb{R}$.

1. (Symmetry) $\vec{u} \cdot \vec{w}=\vec{\omega} \cdot \vec{u}$
2. (Linear in each vector) $(\vec{v}+\vec{w}) \cdot \vec{u}=\vec{v} \cdot \vec{u}+\vec{w} \cdot \vec{u}$
3. (Scalars) $(c \vec{u}) \cdot \vec{w}=\underline{c \cdot(\vec{u} \cdot \vec{w})}=\vec{u} \cdot(c \cdot \vec{w})$
4. (Positivity) $\vec{u} \cdot \vec{u} \geq 0$, and the dot product equals \qquad

$$
\vec{u} \cdot \vec{u}=\left[\begin{array}{lll}
u_{1} & u_{2} & \cdots
\end{array} u_{n}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2} \geqslant 0
$$

Section 6.1 Slide 4

$$
\vec{u} \cdot \vec{u}=0 \quad \text { implies } \quad \vec{u}=\overrightarrow{0}
$$

The Length of a Vector

Definition

The length of a vector $\vec{u} \in \mathbb{R}^{n}$ is

$$
\|\vec{u}\|=\sqrt{\vec{u} \cdot \vec{u}}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

Example: the length of the vector $\overrightarrow{O P}$ is

$$
\sqrt{1^{2}+3^{2}+2^{2}}=\sqrt{14}
$$

Example

Let \vec{u}, \vec{v} be two vectors in \mathbb{R}^{n} with $\|\vec{u}\|=5,\|\vec{v}\|=\sqrt{3}$, and $\vec{u} \cdot \vec{v}=-1$. Compute the value of $\|\vec{u}+\vec{v}\|$.

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2} & =\left(\overrightarrow{\left.u^{u}+v\right) \cdot(u+v)}\right. \\
& =u \cdot u+\underline{u \cdot v}+\underline{v \cdot u}+\underline{\underline{v \cdot v}} \\
& =\|u\|^{2}+2 \cdot u \cdot v+\sqrt{\|} \|^{2} \\
& =5^{2}+2 \cdot(-1)+(\sqrt{3})^{2}=25-2+3=26 .
\end{aligned}
$$

Length of Vectors and Unit Vectors

Note: for any vector \vec{v} and scalar c, the length of $c \vec{v}$ is

$$
\|c \vec{v}\|=|c|\|\vec{v}\|
$$

Definition

If $\vec{v} \in \mathbb{R}^{n}$ has length one, we say that it is a unit vector.

For example, each of the following vectors are unit vectors.

$$
\vec{e}_{1}=\binom{1}{0}, \quad \vec{y}=\frac{1}{\sqrt{5}}\binom{1}{2}, \quad \vec{v}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)
$$

Ex

$$
\vec{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad\|\vec{v}\|=\sqrt{1^{2}+2^{2}}=\sqrt{5}
$$

$$
\left\|\frac{1}{\sqrt{5}} \vec{v}\right\|=\left|\frac{1}{\sqrt{5}}\right| \cdot\left\|\overrightarrow{v^{2}}\right\|=\frac{1}{\sqrt{5}} \cdot \sqrt{5}=1 .
$$

unit velar $\rightarrow \frac{\vec{v}}{\| v i \pi}$

Distance in \mathbb{R}^{n}

Definition

For $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the distance between \vec{u} and \vec{v} is given by the formula

$$
\|\vec{u}-\vec{v}\|
$$

Example: Compute the distance from $\vec{u}=\binom{7}{1}$ and $\vec{v}=\binom{3}{2}$.

$$
\vec{u}-\vec{v}=\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

$$
\|\vec{u}-\vec{v}\|=\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
$$

The Cauchy-Schwarz Inequality

$$
\max / \min \text { of dot products. }
$$

Theorem: Cauchy-Bunyakovsky-Schwarz Inequality

For all \vec{u} and \vec{v} in \mathbb{R}^{n},

$$
-\|u\|\|v\| \leqslant u \cdot v \leqslant\|u\|-\|v\|
$$

$$
|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\| .
$$

$|u \cdot v|=\|u\| \cdot\|v\|$
Equality holds if and only if $\vec{v}=\alpha \vec{u}$ for $\alpha=\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$.
uv are paralleel/u,v are limante dependant.
Proof: Assume $\vec{u} \neq 0$, otherwise there is nothing to prove.
Set $\alpha=\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$. Observe that $\vec{u} \cdot(\alpha \vec{u}-\vec{v})=0$. So

$$
\begin{aligned}
0 & \leq\|\alpha \vec{u}-\vec{v}\|^{2}=(\alpha \vec{u}-\vec{v}) \cdot(\alpha \vec{u}-\vec{v}) \\
& =\alpha \vec{u} \cdot(\alpha \vec{u}-\vec{v})-\vec{v} \cdot(\alpha \vec{u}-\vec{v}) \\
& =-\vec{v} \cdot(\alpha \vec{u}-\vec{v}) \\
& =\frac{\|\vec{u}\|^{2}\|\vec{v}\|^{2}-|\vec{u} \cdot \vec{v}|^{2}}{\|\vec{u}\|^{2}}
\end{aligned}
$$

The Triangle Inequality
$-\|u\| \cdot-v v\|\leqslant u \cdot v \leqslant\| u\|-\| v i \|$
Theorem: Triangle Inequality
For all \vec{u} and \vec{v} in \mathbb{R}^{n},

$$
\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| .
$$

Proof:

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \vec{u} \cdot \vec{v} \\
& \leq\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2\|\vec{u}\|\|\vec{v}\|^{2} \\
& =\underbrace{(\|\vec{u}\|+\|\vec{v}\|)^{2}} \\
& a^{2}+b^{2}+2 \cdot a \cdot b=(a+b)^{2}
\end{aligned}
$$

$-\|u\| \cdot\|v\| \leqslant u \cdot v \leqslant\|u\| \cdot\|v\|$
$-1 \leqslant \frac{u \cdot v}{\|u\| \cdot\|v\|} \leqslant 1$

$$
\cos \theta=\frac{u \cdot v)}{\|u\|\|v\|)}
$$

$$
u \cdot v=\|u l-\| v \| \cdot \cos \theta
$$

Angles

$$
u \cdot v=0
$$

Theorem

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \text {. Thus, if } \vec{a} \cdot \vec{b}=0 \text {, then: }
$$

- \vec{a} and/or \vec{b} are Zero vectors, or
- \vec{a} and \vec{b} are perpendicular.

For example, consider the vectors below.

Orthogonality

Definition (Orthogonal Vectors)

Two vectors \vec{u} and \vec{w} are orthogonal if $\vec{u} \cdot \vec{w}=0$. This is equivalent to:

$$
\|\vec{u}+\vec{w}\|^{2}=\stackrel{\text { Pythagorean. }}{=}\|u\|^{2}+\|w\|^{2}
$$

Note: The zero vector in \mathbb{R}^{n} is orthogonal to every vector in \mathbb{R}^{n}. But we usually only mean non-zero vectors.

$$
\|u+w\|^{2}=\underbrace{\|u\|^{2}+\|w\|^{2}}+\underline{\underline{2-u-w}}
$$

Example

Sketch the subspace spanned by the set all vectors \vec{u} that are orthogonal to $\vec{v}=\binom{3}{2}$.

Section 6.1 Slide 13

$$
\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]:\left[\begin{array}{l}
x \\
y
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]=0\right\}
$$

$$
\left.\begin{array}{rl}
=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: \frac{3 x+2 y=0}{}\right\}=\operatorname{Nul}(\underline{A}) \\
y=-\frac{3}{2} x & A
\end{array}=\left[\begin{array}{ll}
3 & 2
\end{array}\right]\right\}
$$

Orthogonal Compliments

Definitions
Let W be a subspace of \mathbb{R}^{n}. Vector $\vec{z} \in \mathbb{R}^{n}$ is orthogonal to W if \vec{z} is orthogonal to every vector in W.

The set of all vectors orthogonal to W is a subspace, the orthogonal compliment of W, or W^{\perp} or ' W perp.'

$$
W^{\perp}=\left\{\vec{z} \in \mathbb{R}^{n}: \vec{z} \cdot \vec{w}=0 \text { for all } \vec{w} \in W\right\}
$$

Example

$$
\begin{aligned}
W & =\operatorname{Span}\left\{\underline{\left[\begin{array}{l}
3 \\
2
\end{array}\right]}\right\}=\operatorname{Col}\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)
\end{aligned}=\operatorname{Col}\left(\left[\begin{array}{ll}
3 & 6 \\
2 & 4
\end{array}\right]\right) ~(z \cdot w=0 \quad \forall w \in W\}
$$

Section 6.1 Slide 14

$$
\begin{aligned}
=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]=3 x+2 y=0\right\} & =N_{u l}\left(\left[\begin{array}{ll}
3 & 2
\end{array}\right]\right) \\
& =N_{u l}\left(\left[\begin{array}{ll}
3 & 2 \\
6 & 4
\end{array}\right]\right) \\
& =N_{u l}\left(A^{\top}\right)
\end{aligned}
$$

Recall $\vec{u} \cdot \vec{v}=\left[\begin{array}{lll}u_{1} & \cdots & u_{w}\end{array}\right]\left[\begin{array}{c}v_{1} \\ \vdots \\ \vdots \\ v_{v}\end{array}\right]=u_{1} v_{1}+\cdots+u_{n} v_{n}$
$\vec{u} \cdot \vec{v}=0 \quad-\vec{u}$ is orthogonal \quad to $\vec{v} \quad(\vec{u} \perp \vec{v})$ \vec{u} is orthogonal to W if $\vec{u} \perp \vec{w}$ for all $\vec{w} \in W$. $W^{\perp}=\{\vec{u}: \vec{u} \perp W\}$: orthogond compliment of w.

Example
Example: suppose $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)$.

- $\operatorname{Col} A$ is the span of $\vec{a}_{1}=\binom{1}{2}$
- Col A^{\perp} is the span of $\vec{z}=\binom{2}{-1}$

Sketch Null A and $\operatorname{Null} A^{\perp}$ on the grid below.

$$
\left.\begin{array}{rl}
& (\operatorname{Col}(A))^{\perp} \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
= & \left\{\vec{u}: \vec{u} \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right]=0\right\} \\
= & \left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: 1-x+2 y=0\right.
\end{array}\right\}
$$

Section $6.1 \quad$ Slide 15
$=\operatorname{Null}\left(A^{\top}\right)$

$$
\begin{aligned}
& - \text { - } \\
& \left.=\xrightarrow{\{ } \underset{\rightarrow}{ }\left\{\begin{array}{l}
x \\
y
\end{array}\right]:-3 x+y=0 .\left[\begin{array}{c}
-3 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=0\right\} \\
& -3 x+y=0 \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
3 x
\end{array}\right]} \\
& y=3 x \\
& =x\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
6
\end{array}\right]\right) \\
& \operatorname{Row}(A)=\operatorname{Cot}\left(A^{\top}\right)=\operatorname{Col}\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]\right)
\end{aligned}
$$

Example

Line L is a subspace of \mathbb{R}^{3} spanned by $\vec{v}=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$. Then the space L^{\perp} is a plane. Construct an equation of the plane L^{\perp}.

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF

$$
\left\{\begin{array}{l}
\operatorname{Noll}(A) \\
\operatorname{Col}(A)^{\perp}=\mathbb{R}^{n} \\
\operatorname{Null}\left(A A^{\top}\right)
\end{array}\right.
$$

Row A

Definition

Row A is the space spanned by the rows of matrix A.

We can show that

- $\operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(\operatorname{Col}(A)) \quad \&$ Dimension Thu Lo Example
- a basis for Row A is the pivot rows of A

Note that $\operatorname{Row}(A)=\operatorname{Col}\left(A^{T}\right)$, but in general Row A and $\operatorname{Col} A$ are not related to each other

Example 3
 $A \in \mathbb{R}^{m \times n}$

Describe the $\operatorname{Null}(A)$ in terms of an orthogonal subspace.

3. Row A is
 to Null A.
4. The dimension of Row A plus the dimension of Null A equals
 Null A, and the orthogonal complement of $\operatorname{Col} A$ is $\operatorname{Null} A^{T}$.

The idea behind this theorem is described in the diagram below.

Looking Ahead - Projections

Suppose we want to find the closed vector in $\operatorname{Span}\{\vec{b}\}$ to \vec{a}.

- Later in this Chapter, we will make connections between dot products and projections.
- Projections are also used throughout multivariable calculus courses.

Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares
Math 1554 Linear Algebra

Topics and Objectives

Topics

1. Orthogonal Sets of Vectors
2. Orthogonal Bases and Projections.

Learning Objectives

1. Apply the concepts of orthogonality to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) characterize bases for subspaces of \mathbb{R}^{n}, and
d) construct orthonormal bases.

Motivating Question

What are the special properties of this basis for \mathbb{R}^{3} ?

$$
\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] / \sqrt{11}, \quad\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] / \sqrt{6}, \quad\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right] / \sqrt{66}
$$

Orthogonal Vector Sets

Definition

A set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ are an orthogonal set of vectors if for each $j \neq k, \vec{u}_{j} \perp \vec{u}_{k}$.

Example: Fill in the missing entries to make $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ an orthogonal set of vectors.

$$
\begin{aligned}
& \vec{u}_{1}=\left[\begin{array}{c}
4 \\
0 \\
1
\end{array}\right]_{\checkmark}^{\sim}, \quad \vec{u}_{2}=\left[\begin{array}{c}
-2^{\llcorner } \\
0 \\
8
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \vec{u}_{1}-\vec{u}_{2}=4 \cdot(-2)+0.0+1 \cdot \square=0
\end{aligned}
$$

Linear Independence

Theorem (Linear Independence for Orthogonal Sets)
Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal set of vectors. Then, for scalars c_{1}, \ldots, c_{p},
$\sqrt{ }$ Generalization of Pythagorean

$$
\left\|c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}\right\|^{2}=c_{1}^{2}\left\|\vec{u}_{1}\right\|^{2}+\cdots+c_{p}^{2}\left\|\vec{u}_{p}\right\|^{2} .
$$

In particular, if all the vectors \vec{u}_{r} are non-zero, the set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ are linearly independent.

Proof Suppose $c_{1} \overrightarrow{u_{1}}+c_{2} \overrightarrow{u_{2}}+\cdots+c_{p} \overrightarrow{u_{p}}=\overrightarrow{0}$
Need: $\quad C_{1}=0=C_{2}=\ldots=C_{p}$
To find C_{1},

$$
\overrightarrow{u_{1}} \cdot(\overbrace{\left.c_{1} \overrightarrow{u_{1}}+c_{2} \vec{u}_{2}+\cdots+c_{p} \vec{u}_{p}\right)=0}^{=0}
$$

Section 6.2 Slide 24

$$
\begin{aligned}
& \begin{aligned}
c_{1} \cdot \underbrace{\vec{u}_{1}}_{1} \cdot \overrightarrow{u_{1}}+c_{2} \mid \overrightarrow{\vec{u}_{1}} \cdot \overrightarrow{u_{2}} \\
=0
\end{aligned}+\cdots+c_{p} \begin{array}{r}
\overrightarrow{u_{1}} \cdot \overrightarrow{u_{p}} \\
=0
\end{array}=0 \\
& C_{1} \cdot \underbrace{\left\|u_{1}\right\|^{2}}_{\neq 0}=0 \quad \Rightarrow \quad C_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& w=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{p} \vec{u}_{p} \\
& \text { Find } c_{q}: \quad \vec{u}_{q}, \vec{\omega}=\vec{u}_{q} \cdot\left(c_{1} \vec{u}_{1}+\cdots+c_{q} \vec{u}_{q}+\cdots+c_{p} \vec{u}_{p}\right) \\
& =C_{q} \text {. } \cdot \vec{u}_{q} \cdot \vec{u}_{q} \\
& \text { Orthogonal Bases } \\
& c_{q}=\frac{\overrightarrow{u_{q}} \cdot \vec{\omega}}{\overrightarrow{u_{q}} \cdot \overrightarrow{u_{q}}} \\
& \text { Theorem (Expansion in Orthogonal Basis) } \\
& \text { Let }\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\} \text { be an orthogonal basis for a subspace } W \text { of } \\
& \mathbb{R}^{n} \text {. Then, for any vector } \vec{w} \in W \text {, } \\
& \vec{w}=c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p} . \\
& \text { Above, the scalars are } c_{q}=\frac{\vec{w} \cdot \vec{u}_{q}}{\vec{u}_{q} \cdot \vec{u}_{q}} \text {. }
\end{aligned}
$$

For example, any vector $\vec{w} \in \mathbb{R}^{3}$ can be written as a linear combination of $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$, or some other orthogonal basis $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$.

Example

$$
\vec{x}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \vec{u}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \vec{s}=\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)^{\epsilon W}
$$

Let W be the subspace of \mathbb{R}^{3} that is orthogonal to \vec{x}.
a) Check that an orthogonal basis for W is given by \vec{u} and \vec{v}.
b) Compute the expansion of \vec{s} in basis W.

$$
\left.\begin{array}{l}
W=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]:\left[\begin{array}{lll}
x & y & z
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=x+y+z=0\right.
\end{array}\right\}
$$

$\Rightarrow\{u, v\}$ is a basis.
ion. indef.

Section $6.2 \quad$ Slide 26

$$
\begin{aligned}
& \vec{s}=a \cdot \vec{u}+b \vec{v} \\
& a=\frac{\vec{u} \cdot \vec{s}}{\vec{u} \cdot \vec{u}}, \quad b=\frac{\vec{v} \cdot \vec{s}}{\vec{v} \cdot \vec{v}} \\
& \\
& =\quad \therefore \quad=\cdots
\end{aligned}
$$

$$
\begin{aligned}
\vec{\omega} & =c_{1} \overrightarrow{u_{1}}+\cdots+\vec{c}_{p} \vec{u}_{p} \\
c_{q} & =\frac{\vec{\omega} \cdot \overrightarrow{u_{q}}}{\overrightarrow{u_{q}} \cdot \overrightarrow{u_{q}}} \\
\|w\|^{2} & =\left\|c_{1} \overrightarrow{u_{1}}\right\|^{2}+\left\|c_{2} \overrightarrow{u_{2}}\right\|^{2}+\cdots+\left\|c_{p} \overrightarrow{u_{p}}\right\|^{2} \\
& =c_{1}^{2}\left\|\overrightarrow{u_{1}}\right\|^{2}+\cdots+c_{p}^{2}\left\|\overrightarrow{u_{p}}\right\|^{2}
\end{aligned}
$$

Projections

Let \vec{u} be a non-zero vector, and let \vec{v} be some other vector. The orthogonal projection of \vec{v} onto the direction of \vec{u} is the vector in the span of \vec{u} that is closest to \vec{v}.

$$
\operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}
$$

The vector $\vec{w}=\vec{v}-\operatorname{proj}_{\vec{u}} \vec{v}$ is orthogonal to \vec{u}, so that

$$
\begin{gathered}
\vec{v}=\operatorname{proj}_{\vec{u}} \vec{v}+\vec{w} \\
\|\vec{v}\|^{2}=\left\|\operatorname{proj}_{\vec{u}} \vec{v}\right\|^{2}+\|\vec{w}\|^{2}
\end{gathered}
$$

$$
\vec{v}=\vec{y}+\vec{w}, \quad \underline{\underline{y}}=c \cdot \vec{u}, \quad \vec{w} \cdot \vec{u}=0
$$

$$
=c \cdot \vec{u}+\vec{w}
$$

Section $6.2 \quad$ Slide 27

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =\overrightarrow{\vec{u}} \cdot(c \vec{u}+\vec{w})=c \cdot \vec{u} \cdot \vec{u}+\underbrace{\vec{u} \cdot \vec{w}} \\
c & =\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \\
y & =\frac{\vec{u} \cdot \overrightarrow{v^{2}}}{\vec{u} \cdot \vec{u}} \cdot \vec{u}=\operatorname{Proj}_{\vec{u}} \overrightarrow{v^{2}}
\end{aligned}
$$

$$
\text { Projection of } \vec{v} \text { onto } \vec{u}
$$

Example
Let L be spanned by $\vec{u}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.

1. Calculate the projection of $\vec{y}=(-3,5,6,-4)$ onto line L.
2. How close is \vec{y} to the line L ?
3. $\quad r_{j} \overrightarrow{j_{u}} \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \cdot \vec{u}=\frac{4}{4} \vec{u}=\vec{u}$
4. distance $(\vec{y}, L)=\left\|y-\operatorname{proj}_{\vec{u}} \vec{y}\right\|$

$$
=\quad\|\vec{y}-\vec{u}\|
$$

$$
=\ldots
$$

$$
\begin{array}{r}
\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{p}\right\}: \text { basis of } w \text { if }\left\{\begin{array}{l}
\text { lin. } \text { instep. } \\
\text { span } w \\
\text { orthogonal if } \vec{u}_{i} \cdot \vec{u}_{j}=0 \\
\forall_{i} \neq j
\end{array}\right.
\end{array}
$$

orthonormal if orthogonal
Definition

$$
\left\|u_{i}\right\|=1
$$

Definition (Orthonormal Basis)
An orthonormal basis for a subspace W is an orthogonal basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ in which every vector \vec{u}_{q} has unit length. In this case, for each $\vec{w} \in W$,

$$
\begin{aligned}
& \vec{w}=\left(\vec{w} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\cdots+\left(\vec{w} \cdot \vec{u}_{p}\right) \vec{u}_{p} \\
& \|\vec{w}\|=\sqrt{\left(\vec{w} \cdot \vec{u}_{1}\right)^{2}+\cdots+\left(\vec{w} \cdot \vec{u}_{p}\right)^{2}}
\end{aligned}
$$

basis $\rightarrow \vec{\omega}=C_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}$
orthogonal $\rightarrow=\frac{\vec{\omega} \cdot \vec{u}_{1}}{\vec{u}_{p} \cdot \vec{u}_{1}^{\prime}} \cdot \vec{u}_{1}+\cdots+\frac{\vec{w} \cdot \vec{u}_{p}}{\overrightarrow{u_{p}^{+}} \cdot u_{p}} \cdot \vec{u}_{p}$
$\underset{\substack{\text { Orthprrormal } \\ \text { section } 6.2 \\ \text { Slide 29 }}}{\text { Ort }} \rightarrow\left(\vec{w}-\vec{u}_{l}\right) \vec{u}_{r}+\cdots+\left(\vec{w}-\vec{u}_{p}\right) \vec{u}_{p}$

Example

The subspace W is a subspace of \mathbb{R}^{3} perpendicular to $x=(1,1,1)$. Calculate the missing coefficients in the orthonormal basis for W.

$$
\begin{aligned}
& u=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad v=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right] \\
& \text { - } \left.W=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: \overline{\bar{x}} \begin{array}{l}
y \\
z
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=x+y+z=0\right\} \\
& =\operatorname{Null}\left(\left[\begin{array}{lll}
1 & 1 & \mid
\end{array}\right]\right)=\operatorname{Null}\left(x^{\top}\right), \operatorname{dim}(W)=2 \\
& \text { - } \vec{x} \neq 0 \quad \vec{u}=\frac{1}{\|\vec{x}\|} \vec{x} \quad\|\vec{u}\|=\frac{1}{\|\vec{x}\|}-\vec{x}\left\|=\frac{1}{\mid \vec{x} \|}-\right\| \vec{x} \|=1
\end{aligned}
$$

Orthogonal Matrices

An orthogonal matrix is a square matrix whose columns are orthonormal.

Theorem
An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I_{n}$.

Can U have orthonormal columns if $n>m$?

$$
\vec{u}_{i} \in \mathbb{R}^{m}
$$

Section 6.2

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \quad \vec{x} \in \mathbb{R}^{n}, \quad \underline{\vec{y}} \in \mathbb{R}^{m} \\
& \underline{A-\vec{x}} \in \mathbb{R}^{m} \quad \sum_{i}^{1} a_{i j} x_{j} \\
& \vec{y} \cdot(A \vec{i})^{i}=\left(A^{\top}-y\right) \cdot \vec{x} \\
& \frac{\mathbb{R}^{m}}{\mathbb{R}_{i}^{m} \sum_{i} a_{i j} k_{j} y_{i}} \quad \mathbb{R}^{n} \quad \mathbb{R}^{n}
\end{aligned}
$$

Theorem

$$
V^{\top} \cdot U=I
$$

Theorem (Mapping Properties of Orthogonal Matrices)

Assume $m \times m$ matrix U has orthonormal columns. Then

1. (Preserves length) $\|U \vec{x}\|=\|\vec{x}\|$
2. (Preserves angles) $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$
3. (Preserves orthogonality)

$$
(U \cdot \vec{x}) \cdot(U \cdot \vec{y})=(\underbrace{U^{\top} \cdot U}_{=I} \cdot \vec{x}) \cdot \vec{y}=\vec{x} \cdot \vec{y}
$$

If $\vec{x}=\vec{y}$

$$
\|U \vec{x}\|^{2}=(U \vec{x}) \cdot(U-\vec{x})=\vec{x} \cdot \vec{x}-\|\vec{x}\|^{2}
$$

If $\vec{x}-\vec{y}=0 \quad U \vec{x} \cdot U \vec{y}=\vec{x} \cdot \vec{y}=0$

Section $6.2 \quad$ Slide 32

Example

Compute the length of the vector below.

$$
U=\underbrace{\left[\begin{array}{cc}
1 / 2 & 2 / \sqrt{14} \\
1 / 2 & 1 / \sqrt{14} \\
1 / 2 & -3 / \sqrt{14} \\
1 / 2 & 0
\end{array}\right]}_{\mathbb{R}^{4 \times 2}} \underbrace{\left[\begin{array}{c}
\sqrt{2} \\
-3
\end{array}\right]}_{\mathbb{R}^{2}}=\overrightarrow{\vec{x}} \in \mathbb{R}^{4}
$$

$$
\|U \cdot \vec{x}\|=?
$$

Check: $\quad \begin{aligned}\left\|u_{1}\right\| & =\left\|u_{2}\right\|=1 \\ u_{1} & \cdot u_{2}=0\end{aligned} \quad u_{1}=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \quad u_{2}=\frac{1}{\sqrt{\sqrt{14}}}\left[\begin{array}{c}2 \\ -3 \\ 0\end{array}\right]$

$$
u_{1} \cdot u_{2}=0
$$

U has orthonormal columns $\Rightarrow \vec{U}^{T} U=I$.

$$
\Rightarrow \quad\|\vec{x}\|=\|\vec{x}\|=\sqrt{11} .
$$

Section 6.3 : Orthogonal Projections

Chapter 6: Orthogonality and Least Squares Math 1554 Linear Algebra

Vectors \vec{e}_{1} and \vec{e}_{2} form an orthonormal basis for subspace W.
Vector \vec{y} is not in W.
The orthogonal projection of \vec{y} onto $W=\operatorname{Span}\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is \hat{y}.

Topics and Objectives

Topics

1. Orthogonal projections and their basic properties
2. Best approximations

Learning Objectives

1. Apply concepts of orthogonality and projections to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) construct vector approximations using projections,
d) characterize bases for subspaces of \mathbb{R}^{n}, and
e) construct orthonormal bases.

Motivating Question For the matrix A and vector \vec{b}, which vector \widehat{b} in column space of A, is closest to \vec{b} ?

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & 0 \\
-4 & -2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Example 1

Let $\vec{u}_{1}, \ldots, \vec{u}_{5}$ be an orthonormal basis for \mathbb{R}^{5}. Let $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.
For a vector $\vec{y} \in \mathbb{R}^{5}$, write $\vec{y}=\widehat{y}+w^{\perp}$, where $\widehat{y} \in W$ and $w^{\perp} \in W^{\perp}$.

Section 6.3 Slide 36

$$
=\underbrace{\left(u_{1} \cdot y\right) u_{1}+\left(u_{2}-y\right) u_{2}}_{=\hat{y}}+w^{1}
$$

$B=\left\{\vec{u}_{1}, \vec{u}_{2 i}, \cdots, \vec{u}_{p}\right\}$ is on orthogenal basis for $W . \quad \vec{y} \in W \subseteq \mathbb{R}^{n}$
$\vec{y}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{p} \vec{u}_{p}, \vec{y} \cdot \vec{u}_{p}=c_{q} \cdot\left(\vec{u}_{q} \cdot \vec{u}_{\gamma}\right)$
$c_{q}=\frac{\vec{y} \cdot \vec{u}_{q}}{\overrightarrow{\vec{u}_{q}} \cdot \vec{u}_{q}} \quad \quad \quad w^{L}=\left\{z: \begin{array}{c}\delta^{(z} z+w=0 \\ z+w\end{array}\right.$
$\vec{y} \in \mathbb{R}^{n} \quad \vec{y}=\hat{y}+\omega^{\perp} \quad \hat{y} \in W, \quad \omega^{\perp} \in W^{\perp}$

Orthogonal Decomposition Theorem

$$
\hat{y}=\operatorname{proj}_{W}(\vec{y})
$$

Let W be a subspace of \mathbb{R}^{n}. Then, each vector $\vec{y} \in \mathbb{R}^{n}$ has the unique decomposition

$$
\vec{y}=\widehat{y}+w^{\perp}, \quad \widehat{y} \in W, \quad w^{\perp} \in W^{\perp} .
$$

And, if $\vec{u}_{1}, \ldots, \vec{u}_{p}$ is any orthogonal basis for W,

$$
\hat{y}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\cdots+\frac{\vec{y} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}} \vec{u}_{p} .
$$

We say that \widehat{y} is the orthogonal projection of \vec{y} onto W.

If time permits, we will explain some of this theorem on the next slide.

Explanation (if time permits)

We can write

$$
\widehat{y}=
$$

Then, $w^{\perp}=\vec{y}-\widehat{y}$ is in W^{\perp} because

Example Ra

$$
\vec{y}=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right), \quad \vec{u}_{1}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
\overrightarrow{u_{1}} \cdot \overrightarrow{u_{2}}=0
$$

$$
\alpha \vec{u}_{1}, \vec{u}_{2} \varphi
$$

orthogonal basis for
Construct the decomposition $\vec{y}=\widehat{y}+w^{\perp}$, where \widehat{y} is the orthogonal W . projection of \vec{y} onto the subspace $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

$$
\begin{array}{rlrl}
\hat{y} & =\frac{\vec{y} \cdot \overrightarrow{u_{1}}}{\overrightarrow{\vec{u}_{1}} \cdot \vec{u}_{1}}+\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\vec{u}_{2} \cdot \vec{u}_{2}} \quad \overrightarrow{u_{2}} & \vec{y} \cdot \vec{u}_{1}=8 \\
& =\vec{u}_{1} \cdot \vec{u}_{1}=2^{2}+2^{2}+0^{2}=8 \\
& =\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right] & \vec{y} \cdot \overrightarrow{u_{2}}=3
\end{array}
$$

$$
\vec{y}=\hat{y}+\omega^{1} \quad \omega^{\alpha}=\vec{y}-\hat{y}=\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]
$$

Section 6.3 Slide 39

$$
=\left[\begin{array}{r}
2 \\
-2 \\
0
\end{array}\right]
$$

Check: $\omega^{\perp} \perp W$?

$$
\left\{\begin{array}{l}
\omega^{+} \cdot \vec{u}_{2}=0 \\
\omega^{\alpha}, \overrightarrow{u_{2}}=0
\end{array}\right.
$$

Distance from \vec{y} to W $=\operatorname{minimum}$ of distance
between $\vec{y}, \vec{\omega}$
among $\vec{\omega} \in W$.

Best Approximation Theorem

Theorem

Let W be a subspace of $\mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{n}$, and \widehat{y} is the orthogonal projection of \vec{y} onto W. Then for any $\vec{w} \neq \hat{y} \in W$, we have

$$
\|\vec{y}-\widehat{y}\|<\|\vec{y}-\vec{w}\|
$$

That is, \widehat{y} is the unique vector in W that is closest to \vec{y}.

Proof (if time permits)

The orthogonal projection of \vec{y} onto W is the closest point in W to \vec{y}.

Example Rb

$$
\vec{y}=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right), \quad \vec{u}_{1}=\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

What is the distance between \vec{y} and subspace $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$? Note that these vectors are the same vectors that we used in Example Ra.

$$
\begin{aligned}
\operatorname{dist}(\vec{y}, w) & =\|\vec{y}-\hat{y}\|, \hat{y}=\operatorname{proj}_{w}(\vec{y}) \\
& =\left\|\left[\begin{array}{c}
4 \\
0 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right]\right\|=\sqrt{8} .
\end{aligned}
$$

Section 6.4 : The Gram-Schmidt Process

Chapter 6 : Orthogonality and Least Squares

Vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ are given linearly independent vectors. We wish to construct an orthonormal basis $\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}$ for the space that they span.

Topics and Objectives

Topics

1. Gram Schmidt Process
2. The $Q R$ decomposition of matrices and its properties

Learning Objectives

1. Apply the iterative Gram Schmidt Process, and the QR decomposition, to construct an orthogonal basis.
2. Compute the $Q R$ factorization of a matrix.

Motivating Question The vectors below span a subspace W of \mathbb{R}^{4}. Identify an orthogonal basis for W.

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

Example

The vectors below span a subspace W of \mathbb{R}^{4}. Construct an orthogonal basis for W.

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

$$
y_{2}=x_{2}-\operatorname{proj}_{y_{1}}\left(x_{2}\right), \quad p_{\omega j}\left(x_{2}\right)=\left(\frac{x_{2}-y_{1}}{y_{1} \cdot y_{1}}\right) y_{1}=\frac{3}{4} y_{1}=\frac{3}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 / 4 \\
3 / 4 \\
3 / 4 \\
3 / 4
\end{array}\right]=\left[\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right]
$$

$$
y_{3}=x_{3}-\operatorname{proj}_{S_{\text {pam }}\left\{y_{1}, y_{2}\right\}}\left(x_{2}\right)
$$

$$
\begin{aligned}
& x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \\
& y_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad y_{2}=\left[\begin{array}{c}
-\frac{3}{4} \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& p \operatorname{coj}_{S_{p o n}\left\{y_{1}, y_{2}\right\}}\left(x_{3}\right)=\frac{x_{3}-y_{1}}{y_{1} \cdot y_{1}} y_{1}+\frac{x_{3} \cdot y_{2}}{y_{2}-y_{2}} y_{2} \\
&=\frac{2}{4} y_{1}+\frac{1 / 2}{3 / 4} y_{2} \\
&=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\frac{2}{3} \cdot \frac{1}{4}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
0 \\
4 \\
4 \\
4
\end{array}\right] \\
&=\frac{2}{3}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] \\
& y_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\frac{D}{3}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
\end{aligned}
$$

The Gram-Schmidt Process

Given a basis $\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}$ for a subspace W of \mathbb{R}^{n}, iteratively define

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=\vec{x}_{2}-\left(\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}\right)=p \operatorname{prj}_{v_{1}}\left(x_{2}\right) \\
& \vec{v}_{3}=\vec{x}_{3}-\left(\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}\right)=p r_{j}\left(x_{3}\right) \\
& \vdots \\
& \vec{v}_{p}=\vec{x}_{p}-\left(\frac{\vec{x}_{p} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\cdots+\frac{\vec{x}_{p} \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}\right)^{=p r j}\left(x_{p}\right)
\end{aligned}
$$

Then, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W.

Proof

Geometric Interpretation

Suppose $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ are linearly independent vectors in \mathbb{R}^{3}. We wish to construct an orthogonal basis for the space that they span.

We construct vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, which form our orthogonal basis.

$$
W_{1}=\operatorname{Span}\left\{\vec{v}_{1}\right\}, W_{2}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\} .
$$

Orthonormal Bases

Definition

A set of vectors form an orthonormal basis if the vectors are mutually orthogonal and have unit length.

Example

The two vectors below form an orthogonal basis for a subspace W. Obtain an orthonormal basis for W.

$$
\vec{v}_{1}=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right] .
$$

Gram - Schmidts Process
$\left\{\vec{x}_{1}, \vec{x}_{2} \ldots, \vec{x}_{p}\right\}$ linearly indep. (a basis for

$$
\left.W=S_{p a n}\left\{x_{1}, \cdots, x_{p}\right\}\right)
$$

$\left\{\vec{y}_{1}, \cdots, \vec{y}_{p}\right\} \quad$ orthogonal

$$
\begin{gathered}
\vec{u}_{q}=\frac{\vec{y}_{q}}{\left\|\vec{y}_{q}\right\|} \quad \Rightarrow\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{p}\right\} \quad \text { orthonormal } \\
\vec{x}_{1}=\left(\vec{x}_{1} \cdot \vec{u}_{1}\right) \cdot \vec{u}_{1}+\left(\overrightarrow{x_{1}}, \overrightarrow{u_{2}}\right) \vec{u}_{2}+\left(\overrightarrow{x_{2}} \cdot \vec{u}_{3}\right) \vec{u}_{3}+\cdots+\left(\vec{x}_{1} \cdot u_{p}\right) \vec{u}_{p} \\
\vec{x}_{2}=\left(\vec{x}_{2} \cdot \vec{u}_{1}\right) \cdot \vec{u}_{1}+\left(\vec{x}_{2} \vec{u}_{2}\right) \vec{u}_{2}+\left(\vec{x}_{2} \vec{u}_{2}\right) \vec{u}_{3}+\cdots+\left(\vec{x}_{2} \cdot u_{p}\right) \vec{u}_{p} \\
\vec{x}_{3}=\left(\overrightarrow{x_{3}} \cdot \overrightarrow{u_{1}}\right) \cdot \vec{u}_{1}+\left(\vec{x}_{3} \cdot \vec{u}_{2}\right) \vec{u}_{2}+\left(\vec{x}_{3} \vec{u}_{3}\right) \vec{u}_{3}+\cdots+\left(\vec{x}_{3} \cdot u_{p}\right) \vec{u}_{p} \\
\vdots \\
\vec{x}_{p}=\left(\vec{x}_{p} \cdot \overrightarrow{u_{1}}\right) \cdot \vec{u}_{1}+\left(\vec{x}_{p} \cdot \vec{u}_{2}\right) \vec{u}_{2}+\left(\vec{x}_{p} \cdot \vec{u}_{3}\right) \vec{u}_{3}+\cdots+\left(\vec{x}_{p} \cdot u_{p}\right) \vec{u}_{p}
\end{gathered}
$$

upper triangular.

$$
A=\left[\begin{array}{llll}
\vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{\rho}
\end{array}\right]=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{cccc}
\vec{x}_{1}-\vec{u}_{1} & \vec{x}_{2} \cdot \vec{u}_{1} & & \vec{x}_{\rho} \cdot \vec{u}_{n} \\
0 & \vec{x}_{2} \cdot \overrightarrow{u_{2}} & & \vec{x}_{p} \overrightarrow{u_{2}} \\
0 & 0 & \cdots & \vdots \\
\vdots & \vdots & & \vdots \\
\vdots & & & \vec{x}_{p} \cdot \vec{u}_{\rho}
\end{array}\right]
$$

$$
\begin{aligned}
& \overrightarrow{y_{1}}=\vec{x}_{1} \\
& \vec{y}_{2}=\vec{x}_{2}-\operatorname{proj}_{\vec{y}_{1}}\left(\vec{x}_{2}\right)=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{y}_{1}}{\overrightarrow{y_{1}} \cdot \vec{y}_{1}} \cdot \vec{y}_{1} \\
& \vec{y}_{3}=\vec{x}_{3}-\operatorname{proj}_{S_{\operatorname{pom}}\left\{y_{1}, y_{2}\right\}}\left(\vec{x}_{3}\right)=\vec{x}_{3}-\left(\frac{\vec{x}_{3} \cdot \vec{y}_{1}}{\overrightarrow{y_{1}} \cdot \vec{y}_{1}} y_{1}+\frac{\vec{x}_{3} \cdot \vec{y}_{2}}{\overrightarrow{\vec{y}_{2}}-\overrightarrow{y_{2}}} y_{2}\right) \\
& \vec{y}_{p}=\vec{x}_{p}-p r o j\left(\vec{x}_{p}\right) \\
& S_{\text {loan }}\left\{\vec{y}_{12}, \cdots \vec{y}_{p-1}\right\}
\end{aligned}
$$

QR Factorization

Theorem

Any $m \times n$ matrix A with linearly independent columns has the $\mathbf{Q R}$ factorization

$$
A=Q R
$$

where

1. Q is $m \times n$, its columns are an orthonormal basis for $\operatorname{Col} A$.
2. R is $n \times n$, upper triangular, with positive entries on its diagonal, and the length of the $j^{\text {th }}$ column of R is equal to the length of the $j^{\text {th }}$ column of A.

In the interest of time:

- we will not consider the case where A has linearly dependent columns
- students are not expected to know the conditions for which A has a QR factorization

Proof

Example
Construct the $Q R$ decomposition for $A=\left[\begin{array}{cc}\overrightarrow{x_{1}} & \overrightarrow{x_{2}} \\ 3 & -2 \\ 2 & 3 \\ 0 & 1\end{array}\right]$. $\vec{x}_{1} \cdot \vec{x}_{2}=0$ orthogonal

$$
\begin{aligned}
& Q=\left[\begin{array}{ll}
\vec{u}_{1} & \vec{u}_{2}
\end{array}\right] \quad R=\left[\begin{array}{cc}
\left(\vec{x}_{1} \cdot \vec{u}_{1}\right) & \left(\overrightarrow{x_{2}}-\vec{u}_{1}\right) \\
0 & \left(\vec{x}_{2}-\vec{u}_{2}\right)
\end{array}\right] \\
& \left\|x_{1}\right\|=\sqrt{3^{2}+2^{2}+0^{2}}=\sqrt{13} \quad u_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}=\frac{1}{\sqrt{13}}\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right] \\
& \begin{array}{ll}
\left\|x_{2}\right\|=\sqrt{(-2)^{2}+3^{2}+1^{2}}=\sqrt{14} & u_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\frac{1}{\sqrt{14}}\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right]
\end{array} \\
& Q=\left[\begin{array}{cc}
\frac{3}{\sqrt{13}} & -\frac{2}{\sqrt{14}} \\
\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{14}} \\
0 & \frac{1}{\sqrt{14}}
\end{array}\right] \\
& \text { Section } 6.4 \quad \text { Slide } 52 \\
& R=\left[\begin{array}{cc}
\begin{array}{c}
\left\|x_{1}\right\| \\
\| \\
\sqrt{13}
\end{array} & 0 \\
0 & \sqrt{14} \nexists\left\|x_{2}\right\|
\end{array}\right.
\end{aligned}
$$

Section 6.5 : Least-Squares Problems

Chapter 6: Orthogonality and Least Squares
Math 1554 Linear Algebra

Topics and Objectives

Topics

1. Least Squares Problems
2. Different methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares problems using the normal equations and the $Q R$ decomposition.

Motivating Question A series of measurements are corrupted by random errors. How can the dominant trend be extracted from the measurements with random error?

Inconsistent Systems

Suppose we want to construct a line of the form

$$
y=m x+b
$$

that best fits the data below.

$$
\begin{aligned}
0.5 & =m \cdot 0+b \\
1 & =m \cdot 1+b \\
2.5 & =m \cdot 2+b \\
3 & =m 3+b
\end{aligned}
$$

From the data, we can construct the system:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
1 \\
2.5 \\
3
\end{array}\right]
$$

Can we 'solve' this inconsistent system?

$$
A \vec{x}=\vec{b} \text { is consistent }
$$

$$
\begin{aligned}
& \vec{x}_{0} \quad \text { such that } A \vec{x}_{0}=\vec{b} \\
& \min \|A \vec{x}-\vec{b}\|=0
\end{aligned}
$$

The Least Squares Solution to a Linear System

Definition: Least Squares Solution
Let A be a $m \times n$ matrix. A least squares solution to $A \vec{x}=\vec{b}$ is the solution \widehat{x} for which

$$
\|\vec{b}-A \widehat{x}\| \leq\|\vec{b}-A \vec{x}\|
$$

for all $\vec{x} \in \mathbb{R}^{n}$.
Instead of $A \vec{x}=\vec{b}$
Consider

Solution is

A Geometric Interpretation

The vector \vec{b} is closer to $A \hat{x}$ than to $A \vec{x}$ for all other $\vec{x} \in \operatorname{Col} A$.

1. If $\vec{b} \in \operatorname{Col} A$, then \widehat{x} is ...
2. Seek \widehat{x} so that $A \widehat{x}$ is as close to \vec{b} as possible. That is, \widehat{x} should solve $A \widehat{x}=\widehat{b}$ where \widehat{b} is \ldots

Section 6.5 Slide 57

$$
A \vec{x}=\vec{b}
$$

$$
\begin{aligned}
A^{\top} \vec{b}= & A^{\top} A \hat{x}+ \\
& A^{\top} \omega \hat{x}= \\
& A^{\top} \vec{b}
\end{aligned}
$$

$$
\begin{aligned}
& A^{\top} A \vec{x}=A^{+} \cdot \vec{b} \\
& \text { (1) Alconys consistent (thy?) } \\
& \overbrace{\text { max Equations }}^{\infty} \\
& \text { Its solutions }=\text { Least squares } \\
& \text { Solutions } \\
& \frac{E_{\text {verist }}}{\operatorname{Col}\left(A^{\top}\right)}=\operatorname{Col}\left(A^{\top} A\right) \\
& \text { The Normal Equations } \\
& \operatorname{Nul}(A)=\operatorname{Nul}\left(A^{\top} A\right) \\
& \left(A^{\top} \cdot A\right)^{\top}=A^{\top} \cdot(A T)^{\top}
\end{aligned}
$$

Theorem (Normal Equations for Least Squares)

The least squares solutions to $A \vec{x}=\vec{b}$ coincide with the solutions to

$$
\underbrace{A^{T} A \vec{x}=A^{T} \vec{b}}_{\text {Normal Equations }}
$$

Derivation

The least-squares solution \hat{x} is in \mathbb{R}^{n}.

1. \widehat{x} is the least squares solution, is equivalent to $\vec{b}-A \widehat{x}$ is orthogonal to $\square A$.
2. A vector \vec{v} is in Null A^{T} if and only if $\square \vec{v}=\overrightarrow{0}$.
3. So we obtain the Normal Equations:

$$
A \vec{x}=\vec{b}
$$

\vec{x}_{0} is a solution if $\left\|A \vec{x}_{0}-\vec{b}\right\|=0=\frac{\min }{\vec{x}}\|A \vec{x}-\vec{b}\|$
\hat{x} is a least squares solution if

$$
\min _{\vec{x}}\|A \vec{x}-b\|=\|A \hat{x}-b\|
$$

(i) \hat{x} satisfies $\quad A \hat{x}=\operatorname{proj}_{w}(\vec{b})$

$$
\begin{array}{rr}
\vec{b}=A \cdot \hat{x}+\omega & \underline{\omega} \in \omega^{\perp}=\operatorname{Col}(A)^{\perp} \\
A^{+} \vec{b}=A^{\top} A \hat{x}+\underline{A^{\top} \omega} & \operatorname{Nul}_{0}^{\prime \prime}\left(A^{\top}\right)
\end{array}
$$

(ii) $A^{\top} A \hat{x}=A^{\top} \vec{b}$: Normal Equation.
<Always consistent $\&$ why?
Solution $=$ least squabs solution of $A x=b$.

Remark (I) $A^{\top} A$ is square $\left(A \in \mathbb{R}^{m \times n} \quad A^{+} A \in \mathbb{R}^{n \times n}\right)$
(ii) ATA is symmetric (B is symmetric if

$$
\left.\left(A^{\top} A\right)^{\top}=A^{\top} \cdot\left(A^{\top}\right)^{\top}=A^{\top}-A \quad B_{0}=B^{\top}\right)
$$

(iii) $\operatorname{tr}\left(A^{\top} A\right)=$ sum of diagonal
$=$ sum of squares of entries in A
Example
Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
4^{2}+0^{2}+1^{2} & 4 \cdot 0+0-2+1-1 \\
40+0 \cdot 2+1-1 & 0^{2}+2^{2}+1^{2}
\end{array}\right]=\left[\begin{array}{ll}
17 & 1 \\
1 & 5
\end{array}\right] \\
& A^{T} \vec{b}=\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
11
\end{array}\right]=\left[\begin{array}{c}
4-2+1-11 \\
1 \cdot 1
\end{array}\right]=\left[\begin{array}{l}
19 \\
11
\end{array}\right] \\
& {\left[\begin{array}{cc}
17 & 1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
19 \\
11
\end{array}\right]} \\
& \text { Section 6.5 Slide 60 }
\end{aligned}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{17.5-1}\left[\begin{array}{cc}
5 & -1 \\
-1 & 17
\end{array}\right]\left[\begin{array}{l}
19 \\
11
\end{array}\right]=\ldots .
$$

The normal equations $A^{T} A \vec{x}=A^{T} \vec{b}$ become:

$$
\begin{gathered}
A \vec{x}=\vec{b} \\
A \vec{x}=\operatorname{proj}_{C_{0} /(A)}(\vec{b})
\end{gathered} \quad A^{\top} A \vec{x}=A^{\top} \vec{b}
$$

- Special case : A has lin. Tadep. Columns
(i) $\quad A^{\top} A$ is invertible

$$
\hat{x}=\left(A^{\top} A\right)^{-1}-A^{\top} \vec{b}
$$

(ii) $\quad A=Q R$

$$
R \hat{x}=Q^{-1} \vec{b}
$$

A has linearly indep. Columns
$\Rightarrow B=A T A$ is invertible.
proof B is invertible
$\Leftrightarrow \quad B \vec{x}=A^{+} A \vec{x}=0$ has the only trivial solution

$$
\Leftrightarrow \quad A^{\top} A \vec{x}=0 \quad \text { implies } \quad \vec{x}=0
$$

Suppose $A^{\top} A \vec{x}=0$

$$
\begin{aligned}
& 0=\frac{\vec{x}}{\vec{x}} \cdot\left(A^{\tau} A \vec{x}\right)_{q}=(A \vec{x}) \cdot(A \vec{x})=\|A \vec{x}\|^{2} \\
& \quad\left(\vec{x} \cdot\left(A \vec{y}^{\prime}\right)=\left(A^{\top} x\right) \cdot \vec{y}\right)
\end{aligned}
$$

$$
\Rightarrow \quad A \vec{x}=0
$$

$\Rightarrow \quad \vec{x}=0 \quad Q_{(} \Rightarrow A$ has lin. Tadep. columns)

A has in. indef. Columns
$\Rightarrow \quad A^{T} A$ invertible.

$$
\Rightarrow \quad A^{\top} A x=A^{\top} b \quad \hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \quad \forall \vec{b}
$$

$\Rightarrow \quad A^{+} A x=A^{\top} b$ has a unique solution for any to
\Rightarrow If $b=0$. $A x=0$ has a curiae. Solution $\Rightarrow \quad A$ has lin. Tondep. columns

$$
\left.\left.\begin{array}{rl}
A^{\top} A \vec{x}=0 & \Leftrightarrow \quad \vec{x} \in \operatorname{Nul}\left(A^{\top} A\right) \\
\Uparrow
\end{array}\right) \quad \Leftrightarrow \quad \vec{x} \in \operatorname{Nul}(A)\right)
$$

$A^{\top} A x=A^{\top} b$ is consistent if

$$
A^{\top} b \in \operatorname{Col}\left(A^{\top} A\right)=\operatorname{Col}\left(A^{\top}\right)
$$

$$
A^{\top} A x=A^{\top} b \quad \Rightarrow \quad \widehat{x}=\underline{\left(A^{\top} A\right)^{-1}} A^{\top} \vec{b}
$$

A has lin. indep. columns.
uppertriongalt.

$$
\begin{aligned}
& A=\left[x_{1}, \ldots x_{n}\right] \\
& \downarrow \text { Gram-Schanidt } \\
& \downarrow \\
& Q=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right] \\
& A=Q \cdot R \\
& A \vec{x}=\vec{b} \quad Q R \vec{x}=\vec{b} \\
& Q^{\top} Q=I \\
& \underbrace{Q^{\top} Q} R \vec{x}=Q^{+} \vec{b} \\
& R \vec{x}=Q^{\top} \vec{b}
\end{aligned}
$$

Theorem

Theorem (Unique Solutions for Least Squares)

Let A be any $m \times n$ matrix. These statements are equivalent. 1. The equation $A \vec{x}=\vec{b}$ has a unique least-squares solution for each $\vec{b} \in \mathbb{R}^{m}$.
2. The columns of A are linearly independent.
3. The matrix $A^{T} A$ is invertible.

And, if these statements hold, the least square solution is

$$
\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b} .
$$

Useful heuristic: $A^{T} A$ plays the role of 'length-squared' of the matrix A. (See the sections on symmetric matrices and singular value decomposition.)

Theorem (Least Squares and $Q R$)
Let $m \times n$ matrix A have a $Q R$ decomposition. Then for each $\vec{b} \in \mathbb{R}^{m}$ the equation $A \vec{x}=\vec{b}$ has the unique least squares solution

$$
R \widehat{x}=Q^{T} \vec{b} .
$$

(Remember, R is upper triangular, so the equation above is solved by back-substitution.)

Example 3. Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]
$$

Solution. The $Q R$ decomposition of A is

$$
R^{\hat{x}}=\underline{Q^{\top} b}
$$

$$
Q^{T} \vec{b}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-6 \\
4
\end{array}\right]
$$

And then we solve by backwards substitution $R \vec{x}=Q^{T} \vec{b}$

$$
\begin{gathered}
{\left[\begin{array}{lll}
{\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6 \\
4
\end{array}\right]} \\
2 x_{3}=4 \\
2 x_{2}+\frac{x_{3}}{2}=-6 & x_{3}=2 \\
2 x_{2}=-12 \\
2 x_{1}+4 x_{2}+5 x_{3}=\square
\end{array} \quad x_{2}=-6\right.} \\
\end{gathered}
$$

Recall $\quad A \vec{x}=\vec{b} \quad \hat{x}$ least squares solution

$$
\begin{gathered}
\min _{\vec{x}}\|A \vec{x}-\vec{b}\|=\|A \hat{x}-\vec{b}\| \\
A \hat{x}=\rho \operatorname{roj}_{C_{0}(C A)}\left(\overrightarrow{b_{0}}\right)
\end{gathered}
$$

$A^{\top} A \hat{x}=A^{\top} b:$ Normal Equation.

Example
Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Hint: the columns of A are orthogonal.

$$
A=\left[\overrightarrow{x_{1}}, \cdots \vec{x}_{n}\right]
$$

If A has ITrearly indep. columns.
(i) $A^{+} A$ is invertible ($A^{\top} A x=0 \Rightarrow A x=0$)

$$
A^{+} A \hat{x}=A^{\top} b \quad \hat{x}=\left(A^{\top} A\right)^{-1} A^{+} \vec{b} \text { is conique }
$$

(ii) Gran schmidt $\Rightarrow \quad\left\{u_{1}, \cdots, u_{n}\right\}$ orthonormal.

$$
\begin{aligned}
& A \vec{x}=\vec{b}
\end{aligned}
$$

$$
\begin{gathered}
A \vec{x}=\vec{b} \\
\underbrace{Q^{\top} Q R \vec{x}}_{ \pm}=\overrightarrow{Q^{+}} \vec{b}=Q^{T} \vec{b}
\end{gathered}
$$

$$
\left.\left[\begin{array}{c}
-u_{1}- \\
-u_{2}- \\
\vdots \\
-u_{n}
\end{array}\right] \begin{array}{cccc}
1 & 1 & & 1 \\
u_{1} & u_{2} & \cdots & u_{n} \\
1 & 1 & 1
\end{array}\right]
$$

Example

Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
\overrightarrow{x_{1}} \cdot \overrightarrow{x_{2}}
$$

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array} \lambda_{x_{2}}, \quad \vec{b}=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]\right.
$$

Hint: the columns of A are orthogonal. $\Rightarrow \quad$ inn. Fides.
Normal Equation: $\quad A^{\top}-\hat{A x}=\hat{A^{\top} b}$

$$
\begin{gathered}
A^{\top} \cdot A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-6 & -2 & 1 & 7
\end{array}\right]\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
0 & 90
\end{array}\right] \\
A^{\top} \cdot b=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-6 & -2 & 1 \\
-1 \\
2 \\
1 \\
6
\end{array}\right]=\left[\begin{array}{c}
8 \\
45
\end{array}\right] \\
{\left[\begin{array}{cc}
4 & 0 \\
0 & 90
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
8 \\
45
\end{array}\right]} \\
\\
\text { diagonal } \quad 4 x=8 \\
90 y=45
\end{gathered} \quad\left\{\begin{array}{c}
x=2 \\
y=\frac{1}{2}
\end{array}\right.
$$

Example
Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
\begin{aligned}
& \operatorname{prj}(\vec{b}) \\
& C_{p a n}\left\{x_{1}, x_{2}\right\}
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
x_{1}
\end{array}\right]
$$

Hint: the columns of A are orthogonal.

$$
\begin{array}{rlrl}
u_{1} & =\frac{x_{1}}{\left\|x_{1}\right\|} & u_{2}=\frac{x_{2}}{\left\|x_{2}\right\|} & Q \\
R & =\left[\begin{array}{ccc}
x_{1} \cdot u_{1} & x_{2} \cdot u_{1}=0 & u_{1} \\
0 & x_{2} \cdot u_{2}
\end{array}\right] \\
0 & x_{1} \cdot u_{1}=x_{1} \cdot \frac{x_{1}}{\left\|x_{1}\right\|} \\
& =\left[\begin{array}{cc}
\left\|x_{1}\right\| & 0 \\
0 & \left\|x_{2}\right\|
\end{array}\right] & =\frac{\left\|x_{1}\right\|^{2}}{\left\|x_{1}\right\|}=\left\|x_{1}\right\|
\end{array}
$$

Section 6.5 Slide 63

$$
R \hat{x}=Q^{\top} \cdot \vec{b}
$$

$$
w=\operatorname{Span}\left\{x_{1}, x_{2}\right\} \geq C_{0} \mid(A)
$$

$$
A\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\vec{b}
$$

$$
\operatorname{proj}_{w}(\vec{b}) \neq C_{1} \frac{\vec{x}_{1}}{1}+c_{2} \overrightarrow{x_{2}}
$$

Example

Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
x_{c} & 7
\end{array}\right], \quad \vec{b}=x_{2} \quad\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Hint: the columns of A are orthogonal.

Chapter 6 : Orthogonality and Least Squares 6.6 : Applications to Linear Models

Topics and Objectives

Topics

1. Least Squares Lines
2. Linear and more complicated models

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply least-squares and multiple regression to construct a linear model from a set of data points.
2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question

Compute the equation of the line $y=\beta_{0}+\beta_{1} x$ that best fits the data

x	2	5	7	8
y	1	1	4	3

The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the difference. between limed dates

The least squares line minimizes the sum of squares of the \qquad .

$$
\begin{gathered}
\underset{\max \left\{r_{i} \mid\right.}{\sum\left|r_{i}\right|} \left\lvert\, \begin{array}{l}
\min \\
\underbrace{\sum r_{i}^{2}} \Rightarrow\left\|\left[\begin{array}{c}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right]\right\| \|^{2}
\end{array} \Rightarrow\right. \text { blue line } \\
=\|A x-b\|^{2}
\end{gathered}
$$

Example 1 Compute the least squares line $y=\breve{\beta_{0}}+\breve{\beta_{1}} x$ that best fits the data

$$
\begin{array}{l|llll}
x & 2 & 5 & 7 & 8 \\
\hline y & 1 & 1 & 4 & 3
\end{array} \quad J
$$

We want to solve

$$
X=\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right] \underbrace{\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]}_{\| \vec{\beta}}=\left[\begin{array}{l}
1 \\
1 \\
4 \\
3
\end{array}\right]=\vec{y} \quad\left\{\begin{array}{l}
1=\beta_{0}+\beta_{1}-2 \\
1=\beta_{0}+\beta_{1}-5 \\
4=\beta_{0}+\beta_{1}-7 \\
3=\beta_{0}+\beta_{1}-8
\end{array}\right.
$$

This is a least-squares problem : $X \vec{\beta}=\vec{y}$.

The normal equations are

$$
\begin{aligned}
& X^{T} X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right]=\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right] \\
& X^{T} \vec{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]
\end{aligned}
$$

So the least-squares solution is given by

$$
\hat{\beta}_{0}=-\frac{5}{21}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]}
\end{aligned}{\hat{\beta_{1}}=\frac{19}{42} .}_{y=\beta_{0}+\beta_{1} x=\frac{-5}{21}+\frac{19}{42} x} \quad \text { least square linus. }
$$

As we may have guessed, β_{0} is negative, and β_{1} is positive. linear fit linear regression,

$$
\text { Ex) } \quad f_{1}(x)=x, \quad f_{2}(x)=x^{2}, \quad f_{3}(x)=e^{x} ;
$$

Least Squares Fitting for Other Curves
We can consider least squares fitting for the form

$$
y=c_{0}+c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{k} f_{k}(x)
$$

If functions f_{i} are known, this is a linear problem in the c_{i} variables.
Example
Consider the data in the table below.

x	-1	0	0	1
y	2	1	0	6

Determine the coefficients c_{1} and c_{2} for the curve $y=c_{1} x+c_{2} x^{2}$ that best fits the data.

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
0 \\
6
\end{array}\right] \Leftarrow
$$

$$
\begin{aligned}
& 2=C_{1} \cdot(-1)+C_{2} \cdot(-1)^{2} \\
& 1=c_{1} \cdot 0+C_{2} \cdot 0 \\
& 0=C_{1} \cdot 0+C_{2} \cdot 0 \\
& 6=C_{1} \cdot 1^{2}+C_{2} \cdot 1^{2}
\end{aligned}
$$

Section 6.6 Slide 73

WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha, Mathematica, and many other software.

WolframAlpha

$$
\text { linear fit }\left\{\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}\right\}
$$

Mathematica

LeastSquares $\left[\left\{\left\{x_{1}, x_{1}, y_{1}\right\},\left\{x_{2}, x_{2}, y_{2}\right\}, \ldots,\left\{x_{n}, x_{n}, y_{n}\right\}\right\}\right]$
Almost any spreadsheet program does this as a function as well.

