
Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example
Ak, for large k.

But: multiplying two n⇥ n matrices requires roughly n3 computations. Is
there a more e�cient way to compute Ak?
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Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices

2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Determine whether a matrix can be diagonalized, and if possible
diagonalize a square matrix.

2. Apply diagonalization to compute matrix powers.
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Similar Matrices

Two n⇥n matrices A and B are similar if there is a matrix P so that
A = PBP�1.

Definition

If A and B similar, then they have the same characteristic polynomial.

Theorem

If time permits, we will explain or prove this theorem in lecture. Note:

Our textbook introduces similar matrices in Section 5.2, but doesn’t
have exercises on this concept until 5.3.

Two matrices, A and B, do not need to be similar to have the same
eigenvalues. For example,

✓
0 1
0 0

◆
and

✓
0 0
0 0

◆
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invertible.
-

A =E.B.R =0
=

A= =B Nof similar.

** =x2 %B =x

I =P. I.p4

HofDAIX) =det (A-xI), A =P. B.pt

= det (PB pt-X.P. 1.pt)
= det (P. (B - xI). 4")

=

dP). det (B -xI).S



!* Ie
=dB(x) ⒔



Additional Examples (if time permits)

1. True or false.
a) If A is similar to the identity matrix, then A is equal to the identity

matrix.
b) A row replacement operation on a matrix does not change its

eigenvalues.

2. For what values of k does the matrix have one real eigenvalue with
algebraic multiplicity 2?

✓
�3 k
2 �6

◆
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Diagonal Matrices

A matrix is diagonal if the only non-zero elements, if any, are on the
main diagonal.

The following are all diagonal matrices.


2 0
0 2

�
,

⇥
2
⇤
, In,


0 0
0 0

�

We’ll only be working with diagonal square matrices in this course.
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u



Powers of Diagonal Matrices

If A is diagonal, then Ak is easy to compute. For example,

A =

✓
3 0
0 0.5

◆

A2 =

Ak =

But what if A is not diagonal?
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18) (i)=1i

(3)
Note A, B:diagonal IS AB diagonal? Yes.

9 A is similar todiagonal.
(**n] ("bn]

A =P. D. Pt
-Labanbuland

diagonal
I

AR =(PDP)(P.DP) =PD. (p.pt) · ppt

=P.ADP =p.D2p-

Ak =P. pk.pt

Q:When is this possible?



A
2
=0i)(ii) =(02)2 A =(!! I C

Ar=1**) (d)(!i) =(!)
Note If A, B upper triangular,

So is A-B. <Exercise)

Gal: A =P. D. p-1 D:diagonal.

Use eigenvalues & eigenvectors. A = Rx
n

Suppose Me, s2,---, An
1 I I

eigenvalues

WeWa En eigenvectors
AV1 =1VI

E AV2= x22 in equations -> Iequation.
i

AUn = AnUn

I I
A I Us Uz... Un I-) (Iv Yr... an]

I I

=P
-

La...)
AP =PD. EP is invertible.

**

A =PD pt



Diagonalization

Suppose A 2 Rn⇥n. We say that A is diagonalizable if it is similar to a
diagonal matrix, D. That is, we can write

A = PDP�1
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Diagonalization

If A is diagonalizable , A has n linearly independent eigenvectors.

Theorem

Note: the symbol , means “ if and only if ”.

Also note that A = PDP�1 if and only if

A = [~v1 ~v2 · · ·~vn]

2

6664

�1

�2

. . .
�n

3

7775
[~v1 ~v2 · · ·~vn]�1

where ~v1, . . . ,~vn are linearly independent eigenvectors, and �1, . . . ,�n

are the corresponding eigenvalues (in order).
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[V1 --- en]

A =P.D.p-> P is invertible

def #

Q:When we have a lin.indep. eigenvectors.



Example 1

Diagonalize if possible.
✓
2 6
0 �1

◆
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trace det

↓ I

① Eigenvalues:4,(x) =def(X-11) =Y -12 +(-1) x+1-2)

=
4 - 1 -2 =0i.x=2.- 1.

&x =2:Ec =Nul()

⑧A - 2I =

( o ↳
-> (=6) 0.x +

c-y-y=0.
(1) =[8] =x[!] v=

=18]

&X= -1: A +I =18%) -(55)
(y) =(-94) =y(

-

33 m =()
*=y

A =(64].(881)(82)*
=(64)

C!!jk



Distinct Eigenvalues

If A is n ⇥ n and has n distinct eigenvalues, then A is
diagonalizable.

Theorem

Why does this theorem hold?

Is it necessary for an n⇥ n matrix to have n distinct eigenvalues for it to
be diagonalizable?
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special case

all algebraic multiplicites are 1

A

Thin

x7.x2"*"
distincteigenvales in

=>SC1,...,n3 linearly independent.

Assume
Sketchy of Proof (k-1) distinctengenate -> lin-indep.

gal: A distinct > lin-indep

visitthe
:distinct.

X1(A1V1 +A22 1 . . . +deV=0:W:d1= dz=...dato
A(a1W1+..- +akVk) = 0

ax1 +a2Ust.-. + aKXaV =0
- Arft...

-Amak =o



az(X2 - x,)-V2 +as(Xg -Xis+--. +ax(Xk- x,V=0

-az(xz- x) =- - -
-ak(X(x) =O

# No

E az = . . . =Gk =0

FO
- a,2, =0 -al =0



Recall

A -R is diagonalizable
E There exist an invertible matrix P and

-I

a diagonal matrix D such that A =P.D.P

(Ak =4pkp+)

Suppose Xe, x2,-. An are eigenvalues with eigenvectors

VI.,--is, then

A. TUII.... Un] = [1181x2E2 --- inUn]
ne

-

I
② =[rr...][]

p
AP =PP. ze D

A is diagonalizable =>This P is invertible.

> We have in linearly independent
figenvectors.

If x2, x2..--, xn are all distinct, SVI... UnY is linearly
independent, which leads

toA is diagonalizable.

Today's Question:Whatif distinct.



Non-Distinct Eigenvalues

Theorem. Suppose

A is n⇥ n

A has distinct eigenvalues �1, . . . ,�k, k  n

ai = algebraic multiplicity of �i

di = dimension of �i eigenspace (“geometric multiplicity”)

Then

1. di  ai for all i

2. A is diagonalizable , ⌃di = n , di = ai for all i

3. A is diagonalizable , the eigenvectors, for all eigenvalues, together
form a basis for Rn.
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IRM
E, =Nul (A-X, I)

E Ez =Nul (A-XI)
Ez

&
& -

-
-

-
Es dim(R") =dim(EI) + dim(Ez)t---

11

H

E A is diagonalizable.



Example 2

Diagonalize if possible.
✓
3 1
0 3

◆
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A = trace - sum of

diagonal

D Eigenvales: P(x) =det(A-xI) =R-(343)x+
=R - 6x +q =(X-3) =0 det(A)

x =3 with aly. multi=2.

&Eigenspace Ez =Nul(A- 35)

A - 35 =(80) y
=0 (y) =(%) =x.

dim (Es) = dim (Nul (A-32)) =1

A is NOT diagonalizable.

(3.(5))=3.(!!)* =3(!*)
C)* =(d)



Example 3

The eigenvalues of A are � = 3, 1. If possible, construct P and D such
that AP = PD.

A =

0

@
7 4 16
2 5 8
�2 �2 �5

1

A
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⒗ Nal(A - ) :

6 I 16

328A- I =

I 2 I 8 I ->( I I
- 2 -2 - 6

I 2 X 4
->

(28)
->(!- SI 13

- 4 - 4

p
I 0 2 X1 +2X3 =0

-> O L
&I!! xz +y =

0

(2) = () =xE]. dim (Ei)=1.



X=3
I

A-3I - I22%) -(8)
(*) = [

-x-

xxx) =x(t) +x)!]x2

x3

dim (Es) = dim (A-31) =2
him (E) + dim (Es) =1 +2=3 =dim (R)

=>A is diagonalizable, A =PDPt

08= 3
I also multi

A x x=3 -

D(x) =det (A-xI) =

itisinan
&

Geom. multic

P2 Pk-m(x) =(1 - x,P(x - x).-- ( 1 - xx)
↑minimal poly. I



Additional Example (if time permits)

Note that

~xk =


0 1
1 1

�
~xk�1, ~x0 =


1
1

�
, k = 1, 2, 3, . . .

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the nth

number in this sequence.
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x = 19!))*- (i!]Ffe]=()
11) -(i) +(37 +15) -(8) +13)-...
9:

Findthise
DG(x) =Y - x - 1 =0,x=
distinct 2 eigenvalue - A is diagonalizable.

-
& A - (*) =

(+
*, I⒔)

=I



=(*))**) = =1

M = - 12
x +xzy =0

(A - x) =

2 ,x) -( I
(4) =(

-

423 =

y. ().
I&(A -x2I) =A - () = =(*,x]

-(13-!
xi =I(1 +5)

[Y] =

y. (.] xz =111-5)

k

(ii7 = (s)? I



Chapter 5 : Eigenvalues and Eigenvectors

5.5 : Complex Eigenvalues
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Topics and Objectives

Topics

1. Complex numbers: addition, multiplication, complex conjugate

2. Complex eigenvalues and eigenvectors.

3. Eigenvalue theorems

Learning Objectives

1. Use eigenvalues to determine identify the rotation and dilation of a

linear transform.

2. Rotation dilation matrices.

3. Find complex eigenvalues and eigenvectors of a real matrix.

4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?
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Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square

roots of negative numbers. For example:

x2 + 1 = 0

The roots of this equation are:

We usually write
p
�1 as i (for “imaginary”).
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F
=i

i =F1

The set of complexnumbers =K
o imaginary part.

= Sa +bi =a,b+ (Ry
↑

Real part



Addition and Multiplication

The imaginary (or complex) numbers are denoted by C, where

C = {a+ bi | a, b in R}

We can identify C with R2
: a+ bi $ (a, b)

We can add and multiply complex numbers as follows:

(2� 3i) + (�1 + i) =

(2� 3i)(�1 + i) =
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Ith
~

~ !

x

sw
!
z =a+bi!b

--

--
I

!
Q:geometric meaning? ->
f a

e

-
(2 +(- 1)) + (23) +1)i -enteriss
--

-
2.(-1) +2.i +(-3i).(-1)+ i

=(= -1
=

-2 +2i +3i +3. =1 +5i



Complex Conjugate, Absolute Value, Polar Form

We can conjugate complex numbers: a+ bi =

The absolute value of a complex number: |a+ bi| =

We can write complex numbers in polar form: a+ ib = r(cos�+ i sin�)
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z =a+bi w =3 +di

a - bi

Properties (i) EE) =A(ii) Etw =E+5 (iii)
Freew

(iv) If E=z then ZEIR (v) E + E GIR, ZE ER

(vi) z.E =(a+bi)-(a+bi) =(a+bi)(a-bi) =a- (bi) =a+b> 0

**=EE
-

=length of vector

base
#

rate I cr.p)FatbieA
reflectionof z

along x-axis.
a =r.cosp
b =r. sind

a+bi=Ecosp +Isind. I

= r. (Cosp + i.sind).



Complex Conjugate Properties

If x and y are complex numbers, ~v 2 Cn
, it can be shown that:

• (x+ y) = x+ y

• A~v = A~v

• Im(xx) = 0.

Example True or false: if x and y are complex numbers, then

(xy) = x y
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-

Notation:2=

a+bi, Re(z) =a, Iml)=b.

A =*xn call entries are real) WED"

v=(21,22i ---Un)
F =

(**) Wi,--, Une K

=(I
=* I v =5) =

(=
B

=

E
=A

↑

real



Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

Re(z)

Im(z) z = x+ iy

z̄ = x� iy

��

�

O
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Euler’s Formula

Suppose z1 has angle �1, and z2 has angle �2.

Re(z)

Im(z)

z1z2

z3

�1

�2

O

The product z1z2 has angle �1 + �2 and modulus |z| |w|. Easy to

remember using Euler’s formula.

z = |z| ei�

The product z1z2 is:

z3 = z1z2 = (|z1| ei�1)(|z2|ei�2) = |z1| |z2| ei(�1+�2)
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gip=Cosp+ i sind, bei
&b2 =(z)
/

I -
z =-(sind) =

retz =a+bi

-it -Izei

zi =15,1-e41
-

Ez =1za). eid

Zizzitz).
e)e



Complex Numbers and Polynomials

Every polynomial of degree n has exactly n complex roots, counting

multiplicity.

Theorem: Fundamental Theorem of Algebra

1. If � 2 C is a root of a real polynomial p(x), then the conjugate

� is also a root of p(x).

2. If � is an eigenvalue of real matrix A with eigenvector ~v, then �
is an eigenvalue of A with eigenvector ~v.

Theorem
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Rell At** - PA(X) =def (A-x1) =0:char. Egu.

a degree a polynomial in x.

Roots of GA)=0 = Eigenvalue.

PACX) =An-x* +anX + ...+a1 x + do

90,Gs, 92, --- an ER

poly.Roots arein...-x

Ab, Ac.-- : an ER

PA(x) =det (A-XI) =Anx" +Amx + --- +a,x +do

Suppose 2Ps a root, I is
andgenvalue of A.

aPACas+a=e
an.EE) +am. [En++ as - +do =0.

PACE) =an.(E)"+ an (E)+...+as.E +an =0

=>

is a root of bal) = 0. E is an eigenvalue ofA.



= A.=Et
↑

eigenvector.

z:eigenvalue of e
H if A cR**

E:eigervalue of t

Reall
4 =5a +bi:a,beR),i2 = -1.

Re(z =a, Im(z) =b----.
a+bi

=Atb =ai

I16. EW
=

Ere
Fr =A.F =A.F

if At ARYx

12) =1a+bil ==xEE

z =r-gib = 121-e* =(z).)cosp+i-sinp(

Suppose &is a complexeigenvale of At Rax

with eigenector 2 ->D"

then I is an eigenvale w/ew.
eigenvector



Example

Four of the eigenvalues of a 7⇥ 7 matrix are �2, 4 + i,�4� i, and i.
What are the other eigenvalues?
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real
W e W e

er

-

⑮
~"
~w

4- i -4+i - i

Q1:Are they all eigenvalues? Yes

7x7 matrix - PAID is of degree 7

> PACx)=0 has 7 roofs with

multiplicities
=>T eigenvalues w/ multiplicities.

92:A(X) =det (A-xI)
=(X - (-z))(X - (4+i))(X - 34- i))

(-13 x(x - ( -4 -i))(X - ( -4 +i))(X +i)(X - i)

=-(x +2)(X-8x+7)(4+8x + 12)(A+1)

Q3:Ais diagonalizable. Why? A =P.D.pt



Example

The matrix that rotates vectors by � = ⇡/4 radians about the origin, and

then scales (or dilates) vectors by r =
p
2, is

A =


r 0
0 r

� 
cos� � sin�
sin� cos�

�
=


1 �1
1 1

�

What are the eigenvalues of A? Find an eigenvector for each eigenvalue.
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ii)

⒗...⒔ O
*-T. S.T.

-T =(Tetez:(isit

! start a = e



S = (SeeSen] =

1 * i]
A =5.T =(8). 7(!!)
da(x) =4 =tr(A) x + det(A) -

~
=X - (1 +1)x +(1-1 - (-1.1) =* -2+ =0

-

(A=- 1 r

9
1 =i or-i [I
X =1+1 or 1 - i ↑

A - (1+ i) 1 =1- (1+i) Ttis)=litI[
↓

X-iy
=0 x =iy

-I-I
(3) =(967 = y.[i).

x =(1 +i) - 1 =(i]
X =1 -i - r= =(-i]

> ) =P.DP = /Yye]



Example

The matrix in the previous example is a special case of this matrix:

C =

✓
a �b
b a

◆

Calculate the eigenvalues of C and express them in polar form.
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%x(N =
x2 -2ax +(a2 +b) =

0

e

(1) = -1.62

X -a = b. 2 a
- b.3

X = a
=

bi.

Ex 5 +7:

a :
um = e.

Is there a l*mafrix whose

eigen value i Z ? Yes

z.I



Example

Find the complex eigenvalues and an associated complex eigenvector for

each eigenvalue for the matrix.

A =

✓
1 �2
1 3

◆
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bA(x) =det(A-x2) =
x - (1 +5)X +(3-1 - (-2) -1)

=2x4x 1
=D

(X -2) =- 1

1 -2 =im -

X =2 I i
-1 - i - 2

A - (2+i)1 =

(1
- (2+i) -

1 =[ I
13-12til 1 -E

x +(1- i)y =0 x =(i - 1)y

SYS =y]
x =(2 +i) -0 =(ii)
x =12 - i) -v=5] =(

-

i'].



Section 6.1 : Inner Product, Length, and

Orthogonality

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra

Section 6.1 Slide 1



Topics and Objectives

Topics

1. Dot product of vectors

2. Magnitude of vectors, and distances in Rn

3. Orthogonal vectors and complements

4. Angles between vectors

Learning Objectives

1. Compute (a) dot product of two vectors, (b) length (or magnitude)
of a vector, (c) distance between two points in Rn, and (d) angles
between vectors.

2. Apply theorems related to orthogonal complements, and their
relationships to Row and Null space, to characterize vectors and
linear systems.

Motivating Question

For a matrix A, which vectors are orthogonal to all the rows of A? To
the columns of A?
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The Dot Product

The dot product between two vectors, ~u and ~v in Rn, is defined as

~u · ~v = ~u
T
~v =

⇥
u1 u2 · · · un

⇤

2

6664

v1

v2
...

vn

3

7775
= u1v1 + u2v2 + · · ·+ unvn.

Example 1: For what values of k is ~u · ~v = 0?

~u =

0

BB@

�1
3
k

2

1

CCA , ~v =

0

BB@

4
2
1
�3

1

CCA
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=4.(-1) +2 +k - 1 +2(3)=s-14)
-m - 4 =

E k =D.



Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits
linear properties.

Let ~u,~v, ~w be three vectors in Rn, and c 2 R.

1. (Symmetry) ~u · ~w =

2. (Linear in each vector) (~v + ~w) · ~u =

3. (Scalars) (c~u) · ~w =

4. (Positivity) ~u · ~u � 0, and the dot product equals

Theorem (Basic Identities of Dot Product)

Section 6.1 Slide 4

->t

W.C

-
L

c. (a.) =.(c =)

--E. =[U1 u.... un). =ustuct...+asso11
-> -i. =0 implies U =0



The Length of a Vector

The length of a vector ~u 2 Rn is

k~uk =
p
~u · ~u =

q
u2
1 + u2

2 + · · ·+ u2
n

Definition

Example: the length of the vector
��!
OP is

p
12 + 32 + 22 =

p
14

O

x2

x3

x1

P (1, 3, 2)

31
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->

+22
v= (?)

/ -+22
⑧



Example

Let ~u,~v be two vectors in Rn with k~uk = 5, k~vk =
p
3, and ~u · ~v = �1.

Compute the value of k~u+ ~vk.
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--
11+ERR= [U+2). (u+8)
↳

Iwantin there
=5 +2.1- 1) +(5) =25 -2 +3 =26.



Length of Vectors and Unit Vectors

Note: for any vector ~v and scalar c, the length of c~v is

kc~vk = |c| ||~v||

If ~v 2 Rn has length one, we say that it is a unit vector.

Definition

For example, each of the following vectors are unit vectors.

~e1 =

✓
1
0

◆
, ~y =

1p
5

✓
1
2

◆
, ~v =

1p
3

0

BB@

1
0
1
1

1

CCA
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=>I =(2) 1511 =x22 =5

Ill =11.A =5 =1.

unit restors
inW



Distance in Rn

For ~u,~v 2 Rn, the distance between ~u and ~v is given by the formula

Definition

Example: Compute the distance from ~u =

✓
7
1

◆
and ~v =

✓
3
2

◆
.

~u

~v
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-#
~

length oft
↓l

nector ⑧

11 -1

i == = [?] - [2) =(-)
15-Ell=A* =1.



The Cauchy-Schwarz Inequality

For all ~u and ~v in Rn,

|~u · ~v|  k~ukk~vk.

Equality holds if and only if ~v = ↵~u for ↵ =
~u · ~v
~u · ~u .

Theorem: Cauchy-Bunyakovsky–Schwarz Inequality

Proof: Assume ~u 6= 0, otherwise there is nothing to prove.

Set ↵ =
~u · ~v
~u · ~u . Observe that ~u · (↵~u� ~v) = 0. So

0  k↵~u� ~vk2 = (↵~u� ~v) · (↵~u� ~v)

= ↵~u · (↵~u� ~v)� ~v · (↵~u� ~v)

= �~v · (↵~u� ~v)

=
k~uk2k~vk2 � |~u · ~v|2

k~uk2
Section 6.1 Slide 9

1.

max/win of dot products.

- IUllAl Hot S Iull- 11211

12.21 = 11411.11211

1.5 are parallel/vir and linearly dependant.



The Triangle Inequality

For all ~u and ~v in Rn,

k~u+ ~vk  k~uk+ k~vk.

Theorem: Triangle Inequality

Proof:

k~u+ ~vk2 = (~u+ ~v) · (~u+ ~v)

= k~uk2 + k~vk2 + 2~u · ~v
 k~uk2 + k~vk2 + 2k~ukk~vk
= (k~uk+ k~vk)2
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+ &Dull + 1121)

- Iull Hit Snow Slull-1121

&

G x
-)

I Gamne

a +b2 +2.a.b =(a+b)



Angles

~a ·~b = |~a| |~b| cos ✓. Thus, if ~a ·~b = 0, then:

~a and/or ~b are vectors, or

~a and ~b are .

Theorem

For example, consider the vectors below.

~b

~a~c

✓

�
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- Hull. 11511 < 4.25 lull 121

Wo
-11515 1

1

I~
Cost = i

4.5 =IUD-1151·CosO.

U.r =0

E E
1) UII-11211 =0

CSO =0

Zero

perpendicular.



Orthogonality

Two vectors ~u and ~w are orthogonal if ~u · ~w = 0. This
is equivalent to:

k~u+ ~wk2 =

Definition (Orthogonal Vectors)

Note: The zero vector in Rn is orthogonal to every vector in Rn. But we
usually only mean non-zero vectors.
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Example

Sketch the subspace spanned by the set of all vectors ~u that are

orthogonal to ~v =

✓
3
2

◆
.

x1

x2

~v
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Orthogonal Compliments

Let W be a subspace of Rn. Vector ~z 2 Rn is orthogonal to W if ~z
is orthogonal to every vector in W .

The set of all vectors orthogonal to W is a subspace, the orthogonal

compliment of W , or W? or ‘W perp.’

W
? = {~z 2 Rn : ~z · ~w = 0 for all ~w 2 W}

Definitions
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A

Example W =span [1 =(0) =co1ld])
= E:z.w= -W3

w=[?]
=5 -:=.(2) =0 S

=E(Y):3x + 2y =0) =Nul(23)

=Nul([I])
=Nul (AT



Example

Example: suppose A =

✓
1 3
2 6

◆
.

ColA is the span of ~a1 =

✓
1
2

◆

ColA? is the span of ~z =

✓
2
�1

◆ x1

x2

~a1

~z

ColA

Sketch NullA and NullA? on the grid below.

x1

x2
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&

call
i.=(U1 ... un](Y) =

uett ...Unt

->-
u.v =0 itis tymal" too (+E)
is arthogonal to M if + it for all to W.

-

it =5 : i +WY:orthogonal compliment of W.

(ColCAS
=
SYI

Null(A) =$(y): A(Y) =04

-ST:27=i
=3(5): 03

=((y):1x+zy =0) (5) =(
-

33) =y)2)

=Null), Nell
=Sp?])

Null(A)= (Span S-3)-
-

=Null (AT
=S(y): (-7-747 =0)

SY] =(*) -yre
= 4(3) -

Span ([s], [3])
=(l) (s[])

Row (A) =Col (AT) =



Example

Line L is a subspace of R3 spanned by ~v =

0

@
1
�1
2

1

A. Then the space L
?

is a plane. Construct an equation of the plane L
?.

x

y

z

L

~v

1

�1

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF
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RowA

RowA is the space spanned by the rows of matrix A.

Definition

We can show that

dim(Row(A)) = dim(Col(A))

a basis for RowA is the pivot rows of A

Note that Row(A) = Col(AT ), but in general RowA and ColA are not
related to each other
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AfIR*xh o NullA)

Null(A)
IR*
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Row (A) =Col(At(
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Example 3

Describe the Null(A) in terms of an orthogonal subspace.

A vector ~x is in NullA if and only if

1. A~x =

2. This means that ~x is to each row of A.

3. RowA is to NullA.

4. The dimension of RowA plus the dimension of NullA equals
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For any A 2 Rm⇥n, the orthogonal complement of RowA is
NullA, and the orthogonal complement of ColA is NullAT .

Theorem (The Four Subspaces)

The idea behind this theorem is described in the diagram below.

Row(A)

Null(A)

Col(A)

Null(AT )

Rn Rm
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Looking Ahead - Projections

Suppose we want to find the closed vector in Span{~b} to ~a.

Span{~b}~b

~a

â =proj~b~a

Later in this Chapter, we will make connections between dot
products and projections.

Projections are also used throughout multivariable calculus courses.
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Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Orthogonal Sets of Vectors

2. Orthogonal Bases and Projections.

Learning Objectives

1. Apply the concepts of orthogonality to
a) compute orthogonal projections and distances,

b) express a vector as a linear combination of orthogonal vectors,

c) characterize bases for subspaces of Rn
, and

d) construct orthonormal bases.

Motivating Question

What are the special properties of this basis for R3?
2

4
3
1
1

3

5 /
p
11,

2

4
�1
2
1

3

5 /
p
6,

2

4
�1
�4
7

3

5 /
p
66
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Orthogonal Vector Sets

A set of vectors {~u1, . . . , ~up} are an orthogonal set of vectors
if for each j 6= k, ~uj ? ~uk.

Definition

Example: Fill in the missing entries to make {~u1, ~u2, ~u3} an orthogonal
set of vectors.

~u1 =

2

4
4
0
1

3

5 , ~u2 =

2

4
�2
0

3

5 , ~u3 =

2

4
0

3

5
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Linear Independence

Let {~u1, . . . , ~up} be an orthogonal set of vectors. Then, for
scalars c1, . . . , cp,

��c1~u1 + · · ·+ cp~up

��2 = c
2
1k~u1k2 + · · ·+ c

2
pk~upk2.

In particular, if all the vectors ~ur are non-zero, the set of vectors
{~u1, . . . , ~up} are linearly independent.

Theorem (Linear Independence for Orthogonal Sets)
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Orthogonal Bases

Let {~u1, . . . , ~up} be an orthogonal basis for a subspace W of
Rn. Then, for any vector ~w 2 W ,

~w = c1~u1 + · · ·+ cp~up.

Above, the scalars are cq =
~w · ~uq

~uq · ~uq
.

Theorem (Expansion in Orthogonal Basis)

For example, any vector ~w 2 R3 can be written as a linear combination
of {~e1,~e2,~e3}, or some other orthogonal basis {~u1, ~u2, ~u3}.

~e1 ~e2

~e3

~u1
~u2

~u3
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Example

~x =

0

@
1
1
1

1

A , ~u =

0

@
1
�2
1

1

A , ~v =

0

@
�1
0
1

1

A , ~s =

0

@
3
�4
1

1

A

Let W be the subspace of R3 that is orthogonal to ~x.

a) Check that an orthogonal basis for W is given by ~u and ~v.

b) Compute the expansion of ~s in basis W .
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Projections

Let ~u be a non-zero vector, and let ~v be some other vector. The
orthogonal projection of ~v onto the direction of ~u is the vector in the
span of ~u that is closest to ~v.

proj~u~v =
~v · ~u
~u · ~u~u.

The vector ~w = ~v � proj~u~v is
orthogonal to ~u, so that

~v = proj~u~v + ~w

k~vk2 = kproj~u~vk2 + k~wk2
Span{~u}

~u

~v

proj~u~v

~w
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Example

Let L be spanned by ~u =

0

BB@

1
1
1
1

1

CCA.

1. Calculate the projection of ~y = (�3, 5, 6,�4) onto line L.

2. How close is ~y to the line L?
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Definition

An orthonormal basis for a subspace W is an orthogonal basis
{~u1, . . . , ~up} in which every vector ~uq has unit length. In this
case, for each ~w 2 W ,

~w = (~w · ~u1)~u1 + · · ·+ (~w · ~up)~up

k~wk =
q

(~w · ~u1)2 + · · ·+ (~w · ~up)2

Definition (Orthonormal Basis)
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Example

The subspace W is a subspace of R3 perpendicular to x = (1, 1, 1).
Calculate the missing coe�cients in the orthonormal basis for W .

u =
1

p

2

4
1
0

3

5 v =
1

p

2

4

3

5
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Orthogonal Matrices

An orthogonal matrix is a square matrix whose columns are
orthonormal.

An m⇥n matrix U has orthonormal columns if and only if UT
U = In.

Theorem

Can U have orthonormal columns if n > m?
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Theorem

Assume m⇥m matrix U has orthonormal columns. Then

1. (Preserves length) kU~xk =

2. (Preserves angles) (U~x) · (U~y) =

3. (Preserves orthogonality)

Theorem (Mapping Properties of Orthogonal Matrices)
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Example

Compute the length of the vector below.
2

664

1/2 2/
p
14

1/2 1/
p
14

1/2 �3/
p
14

1/2 0

3

775

p
2

�3

�
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Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

~e1

~e2

~y

ŷ 2 Span{~e1,~e2} = W

Vectors ~e1 and ~e2 form an orthonormal basis for subspace W .

Vector ~y is not in W .

The orthogonal projection of ~y onto W =Span{~e1,~e2} is ŷ.
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Topics and Objectives

Topics

1. Orthogonal projections and their basic properties
2. Best approximations

Learning Objectives

1. Apply concepts of orthogonality and projections to
a) compute orthogonal projections and distances,

b) express a vector as a linear combination of orthogonal vectors,

c) construct vector approximations using projections,

d) characterize bases for subspaces of Rn
, and

e) construct orthonormal bases.

Motivating Question For the matrix A and vector ~b, which vector bb in
column space of A, is closest to ~b?

A =

2

4
1 2
3 0
�4 �2

3

5 , ~b =

2

4
1
1
1

3

5
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Example 1

Let ~u1, . . . , ~u5 be an orthonormal basis for R5. Let W = Span{~u1, ~u2}.
For a vector ~y 2 R5, write ~y = by + w

?, where by 2 W and w
? 2 W

?.
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Orthogonal Decomposition Theorem

Let W be a subspace of Rn. Then, each vector ~y 2 Rn has the
unique decomposition

~y = by + w
?
, by 2 W, w

? 2 W
?
.

And, if ~u1, . . . , ~up is any orthogonal basis for W ,

ŷ =
~y · ~u1

~u1 · ~u1
~u1 + · · ·+ ~y · ~up

~up · ~up
~up.

We say that by is the orthogonal projection of ~y onto W .

Theorem

If time permits, we will explain some of this theorem on the next slide.
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Explanation (if time permits)

We can write

by =

Then, w? = ~y � by is in W
? because
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Example 2a

~y =

0

@
4
0
3

1

A , ~u1 =

0

@
2
2
0

1

A , ~u2 =

0

@
0
0
1

1

A

Construct the decomposition ~y = by + w
?, where by is the orthogonal

projection of ~y onto the subspace W = Span{~u1, ~u2}.
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Best Approximation Theorem

Let W be a subspace of Rn, ~y 2 Rn, and by is the orthogonal
projection of ~y onto W . Then for any ~w 6= ŷ 2 W , we have

k~y � byk < k~y � ~wk

That is, by is the unique vector in W that is closest to ~y.

Theorem
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Proof (if time permits)

The orthogonal projection of ~y onto W is the closest point in W to ~y.

~y

by 2 W

~v 2 W
W
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Example 2b

~y =

0

@
4
0
3

1

A , ~u1 =

0

@
2
2
0

1

A , ~u2 =

0

@
0
0
1

1

A

What is the distance between ~y and subspace W = Span{~u1, ~u2}? Note
that these vectors are the same vectors that we used in Example 2a.
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Section 6.4 : The Gram-Schmidt Process

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

~x1

~x2

~x3

~q1

~q2

~q3

Vectors ~x1, ~x2, ~x3 are given linearly independent vectors. We wish to construct

an orthonormal basis {~q1, ~q2, ~q3} for the space that they span.
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Topics and Objectives

Topics

1. Gram Schmidt Process

2. The QR decomposition of matrices and its properties

Learning Objectives

1. Apply the iterative Gram Schmidt Process, and the QR
decomposition, to construct an orthogonal basis.

2. Compute the QR factorization of a matrix.

Motivating Question The vectors below span a subspace W of R4.
Identify an orthogonal basis for W .

~x1 =

2

664

1
1
1
1

3

775 , ~x2 =

2

664

0
1
1
1

3

775 , ~x3 =

2

664

0
0
1
1

3

775 .
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Example

The vectors below span a subspace W of R4. Construct an orthogonal
basis for W .

~x1 =

2

664

1
1
1
1

3

775 , ~x2 =

2

664

0
1
1
1

3

775 , ~x3 =

2

664

0
0
1
1

3

775 .
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The Gram-Schmidt Process

Given a basis {~x1, . . . , ~xp} for a subspace W of Rn, iteratively define

~v1 = ~x1

~v2 = ~x2 �
~x2 · ~v1
~v1 · ~v1

~v1

~v3 = ~x3 �
~x3 · ~v1
~v1 · ~v1

~v1 �
~x3 · ~v2
~v2 · ~v2

~v2

...

~vp = ~xp �
~xp · ~v1
~v1 · ~v1

~v1 � · · ·� ~xp · ~vp�1

~vp�1 · ~vp�1
~vp�1

Then, {~v1, . . . ,~vp} is an orthogonal basis for W .
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Proof
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Geometric Interpretation

Suppose ~x1, ~x2, ~x3 are linearly independent vectors in R3. We wish to
construct an orthogonal basis for the space that they span.

~x1 = ~v1

~x2

~x3

~v2

~v3

projW2~x3

W1

W2

We construct vectors ~v1,~v2,~v3, which form our orthogonal basis.
W1 = Span{~v1}, W2 = Span{~v1,~v2}.
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Orthonormal Bases

A set of vectors form an orthonormal basis if the vectors are
mutually orthogonal and have unit length.

Definition

Example

The two vectors below form an orthogonal basis for a subspace W .
Obtain an orthonormal basis for W .

~v1 =

2

4
3
2
0

3

5 , ~v2 =

2

4
�2
3
1

3

5 .
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QR Factorization

Any m ⇥ n matrix A with linearly independent columns has the QR

factorization

A = QR

where
1. Q is m⇥ n, its columns are an orthonormal basis for ColA.

2. R is n⇥ n, upper triangular, with positive entries on its
diagonal, and the length of the j

th column of R is equal to the
length of the j

th column of A.

Theorem

In the interest of time:

we will not consider the case where A has linearly dependent
columns

students are not expected to know the conditions for which A has a
QR factorization
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Proof
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Example

Construct the QR decomposition for A =

2

4
3 �2
2 3
0 1

3

5.
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Section 6.5 : Least-Squares Problems

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

https://xkcd.com/1725
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Topics and Objectives

Topics

1. Least Squares Problems

2. Di↵erent methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares
problems using the normal equations and the QR decomposition.

Motivating Question A series of measurements are corrupted by
random errors. How can the dominant trend be extracted from the
measurements with random error?
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Inconsistent Systems

Suppose we want to construct a line of the form

y = mx+ b

that best fits the data below.

x

y

From the data, we can construct the system:
2

664

1 0
1 1
1 2
1 3

3

775


b

m

�
=

2

664

0.5
1
2.5
3

3

775

Can we ‘solve’ this inconsistent system?
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The Least Squares Solution to a Linear System

Let A be a m⇥n matrix. A least squares solution to A~x = ~b

is the solution bx for which

k~b�Abx k  k~b�A~x k

for all ~x 2 Rn.

Definition: Least Squares Solution
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A Geometric Interpretation

~b

Abx

A~x

Col(A) ~0

The vector ~b is closer to Ax̂ than to A~x for all other ~x 2 ColA.

1. If ~b 2 ColA, then bx is . . .

2. Seek bx so that Abx is as close to ~b as possible. That is, bx should
solve Abx = bb where bb is . . .
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The Normal Equations

The least squares solutions to A~x = ~b coincide with the
solutions to

A
T
A~x = A

T~b| {z }
Normal Equations

Theorem (Normal Equations for Least Squares)
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solutionsI Exercise

:
A=Col(AT. Al Tol(AT) =Col (AT.A).

Nul (A) =Nul (A)

CAT.ALT =AT. (ATT



Derivation

~b

Abx

~b�Abx

Col(A)
~0

Rn bx A

The least-squares solution x̂ is in Rn.

1. bx is the least squares solution, is equivalent to ~b�Abx is orthogonal
to A.

2. A vector ~v is in NullAT if and only if ~v = ~0.

3. So we obtain the Normal Equations:
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A* =5

So is a solution if 11A - 511 =0 =min/AY-El

* is a least squares solution if

min/A*-b1 =11 AX-bl

5
i shortest length

CICA) =W

isi
A=5 TS consistent iffB =col(A)

Cil X satisfies Ax
=project)

B
=

A.Y + W went =ColAlt

AtB =ATAY +Atw NICAT
-

ATW =

0

(ii) ATA *
=ATB:Normal Equation.

E Always consistent 5 why?
solution =leastsquare solution of Ax=b.



Example

Compute the least squares solution to A~x = ~b, where

A =

2

4
4 0
0 2
1 1

3

5 , ~b =

2

4
2
0
11

3

5

Solution:

A
T
A =


4 0 1
0 2 1

�2

4
4 0
0 2
1 1

3

5 =

A
T~b =


4 0 1
0 2 1

�2

4
2
0
11

3

5 =
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Bark (i) ATA is square (AERM** ATAGIR**)
ciit ATA is metric CBis symmetric if

CATALT =At. (ATLT =AT. A B =BT )

(iii) tr(ATA)
=sum of diagonal
=>sum of squares ofentries inA
-0

length of A =xATA) (KA, B7 =tr(BTA)
ATAx =Ab

S 4
+02+12 4.0 +0-2 + 1-1

40+0.2-110+2+

12] =[5]
4.2 +1-11

[ .., 3 =(!]

Sis'] S) = (,]
(2) =i-1(-1]("]-...



The normal equations AT
A~x = A

T~b become:

Section 6.5 Slide 61
B AY =5

X

15)
*

ATAY =AT5AY=projcol(A)

· Special case:A has lin. indep columns

(i) ATA is invertible X
=

(ATA) -At

(TT A =QR (=



A has linearly indep. Columns
=>B=ATA is invertible.

of B is invertible

( B* =ATAY =0 has the only trivial
solution

=>ATA =O implies =0.

-

Suppose ATA* =0
-

0 =.(AA)
x

=(AT). (AP) =HAIR

& . (5) =(ATx). (

E A=
P

E I =0 1. Ahas bin. Indep. Columns)
#

A has sin indep. Columns

# ATA invertible.

I ATAX =ATb * =(ATALAT5 *5

-> ATAx=Atb has a might solution

for B
any

-> If b=0. Ax =0 has a unique. Solution

I A has lin. Indep. columns



ATAY =

0 - =Nwl(ATA)

#
A=0 ( * =Nul (A)

Nul (ATA) =Nul (A)

Nul (*Alt =Nul (AC+
col(ATA) =col(AT)

-

ATAx =ATb is consistent if

#66 Col(ATA) =Col(AT)

x=Atb -Y =(A
+

5

Ihas lin indep, columns.

A
=
2 x1, --- - xn)

↓
Grau-Schmidt uppertranged.

↓

G
=[U1Uz.-- Un] A =Q.R

A=5 QR* =B QTQ =I

R =GTE
RY =0T5



Theorem

Let A be any m⇥ n matrix. These statements are equivalent.
1. The equation A~x = ~b has a unique least-squares solution

for each ~b 2 Rm.

2. The columns of A are linearly independent.

3. The matrix A
T
A is invertible.

And, if these statements hold, the least square solution is

bx = (AT
A)�1

A
T~b.

Theorem (Unique Solutions for Least Squares)

Useful heuristic: AT
A plays the role of ‘length-squared’ of the matrix A.

(See the sections on symmetric matrices and singular value
decomposition.)
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Let m⇥ n matrix A have a QR decomposition. Then for each
~b 2 Rm the equation A~x = ~b has the unique least squares
solution

Rbx = Q
T~b.

(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)

Theorem (Least Squares and QR)
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Example 3. Compute the least squares solution to A~x = ~b, where

A =

2

664

1 3 5
1 1 0
1 1 2
1 3 3

3

775 , ~b =

2

664

3
5
7
�3

3

775

Solution. The QR decomposition of A is

A = QR = 1
2

2

664

1 1 1
1 �1 �1
1 �1 1
1 1 �1

3

775

2

4
2 4 5
0 2 3
0 0 2

3

5
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I

-
-R

R

RI - ab
-
-



Q
T~b = 1

2

2

4
1 1 1 1
1 �1 �1 1
1 �1 1 �1

3

5

2

664

3
5
7
�3

3

775 =

2

4�6
4

3

5

And then we solve by backwards substitution R~x = Q
T~b

2

4
2 4 5
0 2 3
0 0 2

3

5

2

4
x1

x2

x3

3

5 =

2

4�6
4

3

5
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I /
E- -

2xs =4 x3
=2

2x2 +3x3 =- 6
I

x2 =- 6
2x= = - 12

2x1 +412 +54 =0 4 =0



Example

Compute the least squares solution to A~x = ~b, where

A =

2

664

1 �6
1 �2
1 1
1 7

3

775 , ~b =

2

664

�1
2
1
6

3

775

Hint: the columns of A are orthogonal.
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Reall A=5 * least squares solution

min 11 AY-5l1 = 11AX -511
I *

- A* =PrjC1A) (B)-core
ATAR =ATb: Normal Equation.

A=[X,, - - - *]

If A has linearly indep. Columns.

(i) ATAis invertible (ATAX=0 = Ax =0)

*

A* =Ab X
=(AT)ATEis unique

(ii) Grow Schmidt -> SUI,....Un3 orthonormal,

A =zu. .
.
.

un3(a)
- QR

ne

-

=I

⑦***E
en

-
R* =a5 [un)(a, i.e. insI

=8%...][



Example

Compute the least squares solution to A~x = ~b, where

A =

2

664

1 �6
1 �2
1 1
1 7

3

775 , ~b =

2

664

�1
2
1
6

3

775

Hint: the columns of A are orthogonal.
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- -

x1-X2

=

0

xi
="x2

->lin. Indep

Normal Equation:At. AR=Ab

x
+ .x =12ii3(!)

=Ci)[

S

[
ab =1

-i!]()
=(45)

(i)(y) =(4]
diagonal. 4x =8 E=

90y =45



Example

Compute the least squares solution to A~x = ~b, where

A =

2

664

1 �6
1 �2
1 1
1 7

3

775 , ~b =

2

664

�1
2
1
6

3

775

Hint: the columns of A are orthogonal.
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proj (E)

Spankx,Xub

Xi = "X2

-

m=i um=ll Q =(w42]
D
I

R =x,oUs X2: UI x,-u =xi - ill2
0 12: Uz

I
=

=1x,
=(**"*] Xz.U2 =11 Xell

RY =aT.5



Example

Compute the least squares solution to A~x = ~b, where

A =

2

664

1 �6
1 �2
1 1
1 7

3

775 , ~b =

2

664

�1
2
1
6

3

775

Hint: the columns of A are orthogonal.
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w
=Span S x,, x2=(((A)

I 2 x2
A)) =5D==

->

(xix3) =5

-
-

X -Xz
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Chapter 6 : Orthogonality and Least Squares

6.6 : Applications to Linear Models
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Topics and Objectives

Topics

1. Least Squares Lines

2. Linear and more complicated models

Learning Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Apply least-squares and multiple regression to construct a linear
model from a set of data points.

2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question

Compute the equation of the line y = �0 + �1x that best fits the data

x 2 5 7 8
y 1 1 4 3
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The Least Squares Line

Graph below gives an approximate linear relationship between x and y.
1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the .

The least squares line minimizes the sum of squares of the .

x

y
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difference between lined data

Ax

5 orYU4
↳
y

3r
ra

2 I wil
min Erie - blue linemaxsris)

-Illi

=11 Ax-bl



Example 1 Compute the least squares line y = �0 + �1x that best fits
the data

x 2 5 7 8
y 1 1 4 3

We want to solve 2

664

1 2
1 5
1 7
1 8

3

775


�0

�1

�
=

2

664

1
1
4
3

3

775

This is a least-squares problem : X~� = ~y.
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~v

#
- 1 =80+1.2

X = 1 =>B0+,.5
E

m

=y

E 4 =B0 +1-7
3 =30

+1 - 8

=xy



The normal equations are

X
T
X =


1 1 1 1

�
2

664

1
1
1
1

3

775 =


4 22
22 142

�

X
T
~y =


1 1 1 1

�
2

664

3

775 =


9
59

�

So the least-squares solution is given by

4 22
22 142

� 
�0

�1

�
=


9
59

�

y = �0 + �1x =
�5

21
+

19

42
x

As we may have guessed, �0 is negative, and �1 is positive.
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2

I

2578 8
I

I

2578 4

3

B =
- E

&i =2.

least square lines.

linear fit

linear regression



Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

y = c0 + c1f1(x) + c2f2(x) + · · ·+ ckfk(x).

If functions fi are known, this is a linear problem in the ci variables.

Example

Consider the data in the table below.
x �1 0 0 1
y 2 1 0 6

Determine the coe�cients c1 and c2 for the curve y = c1x+ c2x
2 that

best fits the data.
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Ex f(x) =x, f2(x) =x2,fz =e; -

2 =(1.(-1) +(z(-1)2

1 =4.0 +(2.0I :(i))?) 0 =c,,0 +(2.0

C 2

6 =4.R +c 1

least*
square solution.



WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha,
Mathematica, and many other software.

WolframAlpha

linear fit {{x1, y1}, {x2, y2}, . . . , {xn, yn}}

Mathematica

LeastSquares[{{x1, x1, y1}, {x2, x2, y2}, . . . , {xn, xn, yn}}]

Almost any spreadsheet program does this as a function as well.
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