$$
\begin{aligned}
Q(x)=x^{2}-2 x y+4 y^{2}=\vec{x} \cdot(A \vec{x}) & \geqslant 0 \quad A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 4
\end{array}\right] \\
& セ \text { positive semi definite. } \\
& \lambda^{2}-(1+4) \lambda+\left(1-4-(-1)^{2}\right)
\end{aligned}
$$

In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true false

$$
=\frac{\lambda^{2}-5 \lambda+3=0}{\lambda_{1} \geqq 0 \quad \lambda_{2} \geq 0}
$$

\& \bigcirc If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions.

$$
\lambda_{1}+\lambda_{2}=5
$$

$$
\lambda_{1} \cdot \lambda_{2}=3
$$

\bigcirc \& $n \times n$ matrix A and its echelon form E will always have the same eigenvalues. $\left.=\left(x^{2}-2 x y+y^{2}\right)+3 y^{2}=\underline{(x-y)^{2}}+3 y^{2} \quad\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right) \rightarrow\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$
Q $\bigcirc x^{2}-2 x y+4 y^{2} \geq 0$ for all real values of x and y. $\lambda^{2}-2 \lambda+(1-1)=0$
Q \quad If matrix A has linearly dependent columns, then $\operatorname{dim}\left(\left(\underline{\text { Row } A)^{\perp}}\right)>0\right.$.
$\not \subset \quad$ If λ is an eigenvalue of A, then $\quad \operatorname{dim}(\operatorname{Null}(A-\lambda I))>0 \quad{ }^{\prime \prime} N u l l(A)$
Q \bigcirc If A has $Q R$ decomposition $A=Q R$, then $\operatorname{Col} A=\operatorname{Cot} Q \quad$ enspace
Q $\bigcirc \quad$ If A has $L U$ decomposition $A=L U$, then $\operatorname{rank}(A)=\operatorname{rank}(U)$.
If A has $\stackrel{m \times m}{L M} U$ decomposition $A=L U$, then $\operatorname{dim}(\operatorname{Null} A)=\operatorname{dim}(\operatorname{Null} U))$.
\& $\left.\quad m \times(n) m_{*}() \quad \operatorname{dim}(\operatorname{Null} U)\right)$.
2. Give an example of the following.

$$
n=\operatorname{dim}(\operatorname{Nall}(A))+\operatorname{ronk}(A)
$$

i) A 4×3 lower triangular matrix, A. such that $\operatorname{Col}(A)^{\perp}$ is spanned by
ii) A 3×4 matrix A, that is in RREF, and satisfies $\operatorname{dim}\left((\text { Row } A)^{\perp}\right)=2$ and $\operatorname{dim}\left((\operatorname{Col} A)^{\perp}\right)=$ 2. $A=(\square)$

$$
\begin{aligned}
x_{1} \cdot\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] & +x_{2}\left[\begin{array}{c}
0 \\
1 \\
0 \\
-2
\end{array}\right] \\
& +x_{3} \cdot\left[\begin{array}{c}
0 \\
0 \\
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
-x_{1}-2 x_{2}-3 x_{3}
\end{array}\right]
\end{aligned}
$$

3. (3 points) Suppose $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 2\end{array}\right)$. On the grid below, sketch a) $\operatorname{Col}(A)$, and b) the eigenspace corresponding to eigenvalue $\lambda=5$.
(a) $\operatorname{Col}(A)$

(b) $\lambda=5$ eigenspace

$$
\begin{aligned}
& A=\left[x_{1}, \cdots, x_{n}\right] \quad \operatorname{Span}\left\{x_{1}\right\}=\operatorname{Span}\left\{u_{1}\right\} \\
& \left.\downarrow G-S \quad \text { Span } d x_{1} x_{2}\right\}=\operatorname{Span}\left\{u_{1}, u_{2}\right\} \\
& Q=\left[u_{1} \ldots u_{n}\right] \\
& C l(A)=S_{\text {pau }}\left\{x_{1} ; \cdots, x_{n}\right\}=\operatorname{span}\left\{u_{1}, \cdots, u_{n}\right\} \\
& \operatorname{Col}^{\prime \prime}(Q)
\end{aligned}
$$

4. Fill in the blanks.
(a) If $A \in \mathbb{R}^{M \times N}, M<N$, and $A \vec{x}=0$ does not have a non-trivial solution, how many pivot columns does A have? \square
$3 x^{2}$
(b) Consider the following linear transformation.
$=\stackrel{x_{2 x 1}}{3 x^{2}} \cdot\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ 4 & -2 \\ -2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
 of T is \mathbb{R}^{3}. The range of T is:
$\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\}=\operatorname{range}(T)=\operatorname{Col}(A)$
5. Four points in \mathbb{R}^{2} with coordinates (t, y) are $(0,1),\left(\frac{1}{4}, \frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right)$, and $\left(\frac{3}{4},-\frac{1}{2}\right)$. Determine the values of c_{1} and c_{2} for the curve $y=c_{1} \cos (2 \pi t)+c_{2} \sin (2 \pi t)$ that best fits the points. Write the values you obtain for c_{1} and c_{2} in the boxes below.

$$
c_{1}=\square \quad c_{2}=\square
$$

In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false. true false
\bigcirc For any vector $\vec{y} \in \mathbb{R}^{2}$ and subspace W, the vector $\vec{v}=\vec{y}-\operatorname{proj}_{W} \vec{y}$ is orthogonal to W.
$\bigcirc \quad$ If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^{m}.
$\bigcirc \quad$ If a matrix is invertible it is also diagonalizable.If E is an echelon form of A, then $\operatorname{Null} A=\operatorname{Null} E$.

If the SVD of $n \times n$ singular matrix A is $A=U \Sigma V^{T}$, then $\operatorname{Col} A=\operatorname{Col} U$.

If the SVD of $n \times n$ matrix A is $A=U \Sigma V^{T}, r=\operatorname{rank} A$, then the first r columns of V give a basis for Null A.
2. Give an example of:
a) a vector $\vec{u} \in \mathbb{R}^{3}$ such that $\operatorname{proj}_{\vec{p}} \vec{u}=\vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p}=\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right): \quad \vec{u}=(\quad)$
b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $\quad A=(\square)$
c) A 3×4 matrix, A, and $\operatorname{Col}(A)^{\perp}$ is spanned by $\left(\begin{array}{c}1 \\ -3 \\ -4\end{array}\right)$.
d) A 2×2 matrix in RREF that is diagonalizable and not invertible.
3. Suppose $A=\left(\begin{array}{ll}2 & -1 \\ 4 & -2\end{array}\right)$. On the grid below, sketch a) the range of $\left.x \rightarrow A x, \mathrm{~b}\right)(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A \vec{x}=\binom{3}{6}$.
(a) range

(b) $(\operatorname{Col} A)^{\perp}$

(c) solutions

4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_{1}=\frac{1}{2}$ and $\lambda_{2}=1$, and whose corresponding eigenvectors are $\vec{v}_{1}=\binom{1}{0}, \vec{v}_{2}=\binom{4}{1}$. Calculate

1. $A\left(\vec{v}_{1}+4 \vec{v}_{2}\right)$
2. A^{10}
3. $\lim _{k \rightarrow \infty} A^{k}\left(\vec{v}_{1}+4 \vec{v}_{2}\right)$

In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

$\bigcirc \quad A$ is a square matrix that is not diagonalizable, but A^{2} is diagonalizable.
\bigcirc
The $\operatorname{map} T_{A}(\vec{x})=A \vec{x}$ is one-to-one but not onto, A is $m \times n$, and $m<n$.
2. Transform $T_{A}=A \vec{x}$ reflects points in \mathbb{R}^{2} through the line $y=2+x$. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.
3. Fill in the blanks.
(a) $T_{A}=A \vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^{2} clockwise by $\pi / 2$ radians about the origin, then reflects them through the line $x_{1}=x_{2}$. What is the value of $\operatorname{det}(A)$? \square
(b) B and C are square matrices with $\operatorname{det}(B C)=-5$ and $\operatorname{det}(C)=2$. What is the value of $\operatorname{det}(B) \operatorname{det}\left(C^{4}\right) ?$ \square
(c) A is a 6×4 matrix in RREF, and $\operatorname{rank}(A)=4$. How many different matrices can you construct that meet these criteria? \square
(d) $T_{A}=A \vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, projects points onto the line $x_{1}=x_{2}$. What is an eigenvalue of A equal to? \qquad
(e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to? \square
(f) If A is 30×12 and $A \vec{x}=\vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30}, the dimension of $\operatorname{Null} A$ is \qquad
4. A is a 2×2 matrix whose nullspace is the line $x_{1}=x_{2}$, and $C=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. Sketch the nullspace of $Y=A C$.
5. Construct an SVD of $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$. Use your SVD to calculate the condition number of A.
