$$0 \times 1 = x^2 - 2xy + 4y^2 = x^2 \cdot (Ax^2) 70 \qquad A = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} + \begin{cases} positive & semi definite \\ x^2 - (1+4)\lambda + (1-4-(-1)^2) \end{cases}$$

In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

E	λ2 - 5 λ	+(3) = 0
		17.

folgo

true	raise	7(72 -
Ø	0	If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions.	λ(+λ2=5 λ(-λ2=3

- A $n \times n$ matrix A and its echelon form E will always have the same \bigcirc
- eigenvalues. $(x^2 2xy + y^2) + 3y^2 = (x y)^2 + 3y^2$ $(x^2 2xy + 4y^2) = (x y)^2 + 3y^2$ $(x^2 2xy + 4y^2) = (x y)^2 + 3y^2$ $(x^2 2xy + 4y^2) = (x y)^2 + 3y^2$ $(x^2 2xy + 4y^2) = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2 = (x y)^2 + 3y^2$ $(x y)^2 + 3y^2 = (x y)^2 + 3y^2 = (x$
- If matrix A has linearly dependent columns, then $\dim((\operatorname{Row} A)^{\perp}) > 0$.
- If λ is an eigenvalue of A, then $\dim(\operatorname{Null}(A \lambda T)) > 0$.
- If A has QR decomposition A = QR, then ColA = ColQ
- If A has LU decomposition A = LU, then rank(A) = rank(U).
- If A has LU decomposition A = LU, then $\dim(\text{Null } A) = \dim(\text{Null } U)$. \bigotimes
- 2. Give an example of the following.

- i) A 4×3 lower triangular matrix, A. such that $\operatorname{Col}(A)^{\perp}$ is spanned by $\begin{pmatrix} \times \\ 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$. $A = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$. $A = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $C_{0}(A) = \begin{pmatrix} \times \\ \times \\ \times \\ 1 \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \\ 1 \end{pmatrix}$. $A = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$. $A = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $C_{0}(A) = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \\ \times \end{pmatrix} =$

$$2. A = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Attishes that (Now A)
$$= 2$$
 and that (Cor A) $=$

$$\begin{cases} \chi_1 \\ \vdots \\ \chi_n \end{cases} + \chi_1 \cdot \begin{bmatrix} \ddots \\ \vdots \\ \ddots \\ \vdots \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ -\chi_1 - 2\chi_2 - 3\chi_3 \end{bmatrix}$$

3. (3 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$. On the grid below, sketch a) Col(A), and b) the eigenspace corresponding to eigenvalue $\lambda = 5$.

- 4. Fill in the blanks.
 - (a) If $A \in \mathbb{R}^{M \times N}$, M < N, and $A\vec{x} = 0$ does not have a non-trivial solution, how many pivot columns does A have?
 - (b) Consider the following linear transformation.

Consider the following linear transformation.

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

The domain of T is \mathbb{R}^{2} . The image of $\vec{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ under $T(\vec{x})$ is $\begin{pmatrix} 2 \\ + \\ -2 \end{pmatrix}$. The co-domain of T is \mathbb{R}^{3} . The range of T is:

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

$$T(x_{1}, x_{2}) = (2x_{1} - x_{2}, 4x_{1} - 2x_{2}, x_{2} - 2x_{1}).$$

5. Four points in \mathbb{R}^2 with coordinates (t,y) are (0,1), $(\frac{1}{4},\frac{1}{2})$, $(\frac{1}{2},-\frac{1}{2})$, and $(\frac{3}{4},-\frac{1}{2})$. Determine the values of c_1 and c_2 for the curve $y=c_1\cos(2\pi t)+c_2\sin(2\pi t)$ that best fits the points. Write the values you obtain for c_1 and c_2 in the boxes below.

$$c_1 = \boxed{ }$$
 $c_2 = \boxed{ }$

In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true false

- O For any vector $\vec{y} \in \mathbb{R}^2$ and subspace W, the vector $\vec{v} = \vec{y} \text{proj}_W \vec{y}$ is orthogonal to W.
- \bigcirc If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^m .
- O If a matrix is invertible it is also diagonalizable.
- \bigcirc If E is an echelon form of A, then Null A = Null E.
- \bigcirc If the SVD of $n \times n$ singular matrix A is $A = U \Sigma V^T$, then Col A = Col U.
- \bigcirc If the SVD of $n \times n$ matrix A is $A = U\Sigma V^T$, r = rankA, then the first r columns of V give a basis for NullA.
- 2. Give an example of:
 - a) a vector $\vec{u} \in \mathbb{R}^3$ such that $\operatorname{proj}_{\vec{p}} \vec{u} = \vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$: $\vec{u} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$:
 - b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $A = \begin{pmatrix} & & \\ & & \end{pmatrix}$
 - c) A 3×4 matrix, A, and $\operatorname{Col}(A)^{\perp}$ is spanned by $\begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$.
 - d) A 2×2 matrix in RREF that is diagonalizable and not invertible.

3. Suppose $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$. On the grid below, sketch a) the range of $x \to Ax$, b) $(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A\vec{x} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

- 4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Calculate
 - 1. $A(\vec{v}_1 + 4\vec{v}_2)$
 - 2. A^{10}
 - $3. \lim_{k \to \infty} A^k(\vec{v}_1 + 4\vec{v}_2)$

In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

possible impossible

The maximum value of
$$\sqrt[a]{x} = ax_1^2 + bx_2^2 + cx_3^2$$
, where $a > b > c$, for $x \in \mathbb{R}^3$, subject to $|x| \neq |x|$ is not unique.

- A is a square matrix that is not diagonalizable, but A^2 is diagonalizable.
- The map $T_A(\vec{x}) = A\vec{x}$ is one-to-one but not onto, A is $m \times n$, and m < n. \bigcirc

^{2.} Transform $T_A = A\vec{x}$ reflects points in \mathbb{R}^2 through the line y = 2 + x. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.

3. Fill in the blanks.

(a)	$T_A = A\vec{x}$, where $A \in \mathbb{R}$	$\mathbb{R}^{2\times 2}$, is a lin	near transform t	that first ro	tates vectors	s in \mathbb{R}^2	clockwise
	by $\pi/2$ radians about	the origin,	then reflects th	nem throug	h the line x	$x_1 = x_2$. What is
	the value of $det(A)$?						

(b) B and C are square matrices with det(BC) = -5 and det(C) = 2. What is the value of $det(B) det(C^4)$?

(c) A is a 6×4 matrix in RREF, and rank(A) = 4. How many different matrices can you construct that meet these criteria?

(d) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2\times 2}$, projects points onto the line $x_1 = x_2$. What is an eigenvalue of A equal to?

(e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to?

(f) If A is 30×12 and $A\vec{x} = \vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30} , the dimension of NullA is

4. A is a 2×2 matrix whose nullspace is the line $x_1 = x_2$, and $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Sketch the nullspace of Y = AC.

5. Construct an SVD of $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Use your SVD to calculate the condition number of A.