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Topics and Objectives

Topics

We will cover these topics in this section.

1. Identity and zero matrices

2. Matrix algebra (sums and products, scalar multiplies, matrix powers)

3. Transpose of a matrix

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Apply matrix algebra, the matrix transpose, and the zero and
identity matrices, to solve and analyze matrix equations.
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Definitions: Zero and Identity Matrices

1. A zero matrix is any matrix whose every entry is zero.

02⇥3 =


0 0 0
0 0 0

�
, 02⇥1 =


0
0

�

2. The n⇥ n identity matrix has ones on the main diagonal,
otherwise all zeros.

I2 =


1 0
0 1

�
, I3 =

2

4
1 0 0
0 1 0
0 0 1

3

5

Note: any matrix with dimensions n⇥ n is square. Zero matrices need
not be square, identity matrices must be square.
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Sums and Scalar Multiples

Suppose A 2 Rm⇥n, and ai,j is the element of A in row i and column j.

1. If A and B are m⇥ n matrices, then the elements of A+B are
ai,j + bi,j .

2. If c 2 R, then the elements of cA are cai,j .

For example, if


1 2 3
4 5 6

�
+ c


7 4 7
0 0 k

�
=


15 10 17
4 5 16

�

What are the values of c and k?
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Properties of Sums and Scalar Multiples

Scalar multiples and matrix addition have the expected properties.

If r, s 2 R are scalars, and A,B,C are m⇥ n matrices, then

1. A+ 0m⇥n = A

2. (A+B) + C = A+ (B + C)

3. r(A+B) = rA+ rB

4. (r + s)A = rA+ sA

5. r(sA) = (rs)A
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Matrix Multiplication

Let A be a m ⇥ n matrix, and B be a n ⇥ p matrix. The
product is AB a m⇥ p matrix, equal to

AB = A

h
~b1 · · · ~bp

i
=

h
A~b1 · · · A~bp

i

Definition

Note: the dimensions of A and B determine whether AB is defined, and
what its dimensions will be.
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Row Column Rule for Matrix Multiplication

The Row Column Rule is a convenient way to calculate the product AB
that many students have encountered in pre-requisite courses.

If A 2 Rm⇥n has rows ~ai, and B 2 Rn⇥p has columns ~bj ,

each element of the product C = AB is cij = ~ai ·~bj .

Row Column Method

Example

Compute the following using the row-column method.

C = AB =

✓
2 0
1 �1

◆✓
3 0 1
4 5 6

◆
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Properties of Matrix Multiplication

Let A,B,C be matrices of the sizes needed for the matrix multiplication
to be defined, and A is a m⇥ n matrix.

1. (Associative) (AB)C = A(BC)

2. (Left Distributive) A(B + C) = AB +AC

3. (Right Distributive) · · ·
4. (Identity for matrix multiplication) ImA = AIn

Warnings:

1. (non-commutative) In general, AB 6= BA.

2. (non-cancellation) AB = AC does not mean B = C.

3. (Zero divisors) AB = 0 does not mean that either A = 0 or B = 0.
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The Associative Property

The associative property is (AB)C = A(BC). If C = ~x, then

(AB)~x = A(B~x)

Schematically:

~x

B~x

AB~x

Multiplication by B
Multiplication by A

Multiplication by AB

The matrix product AB~x can be obtained by either: multiplying by
matrix AB, or by multiplying by B then by A. This means that matrix
multiplication corresponds to composition of the linear

transformations.
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Example

A =


1 1
0 0

�

Give an example of a 2⇥ 2 matrix B that is non-commutative with A.
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The Transpose of a Matrix

A
T is the matrix whose columns are the rows of A.

Example 
1 2 3 4 5
0 1 0 2 0

�T
=

Properties of the Matrix Transpose

1. (AT )T =

2. (A+B)T =

3. (rA)T =

4. (AB)T =
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Matrix Powers

For any n⇥ n matrix and positive integer k, Ak is the product of k
copies of A.

A
k = AA . . . A

Example: Compute C
8.

C =

2

4
1 0 0
0 2 0
0 0 2

3

5
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Example

Define

A =


1 0
0 0

�
, B =


1 0 0
0 0 8

�
, C =

2

4
1 0 0
0 2 0
0 0 2

3

5

Which of these operations are defined, and what are the dimensions of
the result?

1. A+ 3C

2. A(AB)T

3. A+ABCB
T
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Additional Examples

True or false:

1. For any In and any A 2 Rn⇥n, (In +A)(In �A) = In �A
2.

2. For any A and B in Rn⇥n, (A+B)2 = A
2 +B

2 + 2AB.
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Section 2.2 : Inverse of a Matrix

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

”Your scientists were so preoccupied with whether or not they could,
they didn’t stop to think if they should.”

- Spielberg and Crichton, Jurassic Park, 1993 film

The algorithm we introduce in this section could be used to compute an
inverse of an n⇥ n matrix. At the end of the lecture we’ll discuss some of
the problems with our algorithm and why it can be di�cult to compute a

matrix inverse.
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Topics and Objectives

Topics

We will cover these topics in this section.
1. Inverse of a matrix, its algebraic properties, and its relation to

solving systems of linear equations.
2. Elementary matrices and their role in calculating the matrix inverse.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.
1. Apply the formal definition of an inverse, and its algebraic

properties, to solve and analyze linear systems.
2. Compute the inverse of an n⇥ n matrix, and use it to solve linear

systems.
3. Construct elementary matrices.

Motivating Question

Is there a matrix, A, such that

2

4
2 �1 0

�1 2 �1
0 �1 2

3

5A = I3?
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The Matrix Inverse

A 2 Rn⇥n is invertible (or non-singular) if there is a
C 2 Rn⇥n so that

AC = CA = In.

If there is, we write C = A
�1.

Definition
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The Inverse of a 2⇥ 2 Matrix

There’s a formula for computing the inverse of a 2⇥ 2 matrix.

The 2⇥ 2 matrix


a b

c d

�
is non-singular if and only if

ad� bc 6= 0, and then


a b

c d

��1

=
1

ad� bc


d �b

�c a

�

Theorem

Example

State the inverse of the matrix below.


2 5

�3 �7

�

Section 2.2 Slide 18

invertible

↳

-> I
= 1 70addene-thi=]

(19]
-

Exercise



The Matrix Inverse

A 2 Rn⇥n has an inverse if and only if for all ~b 2 Rn, A~x = ~b

has a unique solution. And, in this case, ~x = A
�1~b.

Theorem

Example

Solve the linear system.

3x1 + 4x2 = 7

5x1 + 6x2 = 7
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Properties of the Matrix Inverse

A and B are invertible n⇥ n matrices.

1. (A�1)�1 = A

2. (AB)�1 = B
�1

A
�1 (Non-commutative!)

3. (AT )�1 = (A�1)T

Example

True or false: (ABC)�1 = C
�1

B
�1

A
�1.
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An Algorithm for Computing A�1

If A 2 Rn⇥n, and n > 2, how do we calculate A
�1? Here’s an algorithm

we can use:

1. Row reduce the augmented matrix (A | In)
2. If reduction has form (In |B) then A is invertible and B = A

�1.
Otherwise, A is not invertible.

Example

Compute the inverse of A =

2

4
0 1 2
1 0 3
0 0 1

3

5.
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Why Does This Work?

We can think of our algorithm as simultaneously solving n linear systems:

A~x1 = ~e1

A~x2 = ~e2

...

A~xn = ~en

Each column of A�1 is A�1
~ei = ~xi.

Over the next few slides we explore another explanation for how our

algorithm works. This other explanation uses elementary matrices.
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Elementary Matrices

An elementary matrix, E, is one that di↵ers by In by one row operation.
Recall our elementary row operations:

1. swap rows

2. multiply a row by a non-zero scalar

3. add a multiple of one row to another

We can represent each operation by a matrix multiplication with an
elementary matrix.
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Example

Suppose

E

2

4
1 1 1
�2 1 0
0 0 1

3

5 =

2

4
1 1 1
0 3 2
0 0 1

3

5

By inspection, what is E? How does it compare to I3?
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Theorem

Returning to understanding why our algorithm works, we apply a
sequence of row operations to A to obtain In:

(Ek · · ·E3E2E1)A = In

Thus, Ek · · ·E3E2E1 is the inverse matrix we seek.

Our algorithm for calculating the inverse of a matrix is the result of the
following theorem.

Matrix A is invertible if and only if it is row equivalent to the
identity. In this case, the any sequence of elementary row op-
erations that transforms A into I, applied to I, generates A�1.

Theorem
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Using The Inverse to Solve a Linear System

We could use A
�1 to solve a linear system,

A~x = ~b

We would calculate A
�1 and then:

As our textbook points out, A�1 is seldom used: computing it can
take a very long time, and is prone to numerical error.

So why did we learn how to compute A
�1? Later on in this course,

we use elementary matrices and properties of A�1 to derive results.

A recurring theme of this course: just because we can do something
a certain way, doesn’t that we should.
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Section 2.3 : Invertible Matrices

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

“A synonym is a word you use when you can’t spell the other one.”
- Baltasar Gracián

The theorem we introduce in this section of the course gives us many ways
of saying the same thing. Depending on the context, some will be more

convenient than others.
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Topics and Objectives

Topics

We will cover these topics in this section.

1. The invertible matrix theorem, which is a review/synthesis of many
of the concepts we have introduced.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Characterize the invertibility of a matrix using the Invertible Matrix
Theorem.

2. Construct and give examples of matrices that are/are not invertible.

Motivating Question

When is a square matrix invertible? Let me count the ways!
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The Invertible Matrix Theorem

Invertible matrices enjoy a rich set of equivalent descriptions.

Theorem

Let A be an n⇥ n matrix. These statements are all equivalent.

a) A is invertible.

b) A is row equivalent to In.

c) A has n pivotal columns. (All columns are pivotal.)

d) A~x = ~0 has only the trivial solution.

e) The columns of A are linearly independent.

f) The linear transformation ~x 7! A~x is one-to-one.

g) The equation A~x = ~b has a solution for all ~b 2 Rn
.

h) The columns of A span Rn
.

i) The linear transformation ~x 7! A~x is onto.

j) There is a n⇥ n matrix C so that CA = In. (A has a left inverse.)

k) There is a n⇥n matrix D so that AD = In. (A has a right inverse.)

l) A
T
is invertible.
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Invertibility and Composition

The diagram below gives us another perspective on the role of A�1.

~x

A~x

Multiplication by A

Multiplication by A�1

The matrix inverse A
�1 transforms Ax back to ~x. This is because:

A
�1(A~x) = (A�1

A)~x =
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The Invertible Matrix Theorem: Final Notes

Items j and k of the invertible matrix theorem (IMT) lead us directly
to the following theorem.

If A and B are n⇥n matrices and AB = I, then A and
B are invertible, and B = A

�1 and A = B
�1.

Theorem

The IMT is a set of equivalent statements. They divide the set of all
square matrices into two separate classes: invertible, and
non-invertible.

As we progress through this course, we will be able to add additional
equivalent statements to the IMT (that deal with determinants,
eigenvalues, etc).
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Example 1

Is this matrix invertible?
2

4
1 0 �2
3 1 �2

�5 �1 9

3

5
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Example 2

If possible, fill in the missing elements of the matrices below with
numbers so that each of the matrices are singular. If it is not possible to
do so, state why.

0

@
1 0 1
1 1
0 0 1

1

A ,

0

@
1 1
0 1 1
0 0 1

1

A ,

0

@
1 0 0
0 1 1
0 1

1

A
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Section 2.4 : Partitioned Matrices

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

“Mathematics is not about numbers, equations, computations, or
algorithms. Mathematics is about understanding.”

- William Paul Thurston

Multiple perspectives of the same concept is a theme of this course; each
perspective deepens our understanding. In this section we explore another
way of representing matrices and their algebra that gives us another way of

thinking about them.
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Topics and Objectives

Topics

We will cover these topics in this section.

1. Partitioned matrices (or block matrices)

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Apply partitioned matrices to solve problems regarding matrix
invertibility and matrix multiplication.
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What is a Partitioned Matrix?

Example

This matrix: 2

4
3 1 4 1 0
1 6 1 0 1
0 0 0 4 2

3

5

can also be written as:

2

664


3 1 4
1 6 1

� 
1 0
0 1

�

⇥
0 0 0

⇤ ⇥
4 2

⇤

3

775 =


A1,1 A1,2

A2,1 A2,2

�

We partitioned our matrix into four blocks, each of which has di↵erent
dimensions.
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Another Example of a Partitioned Matrix

Example: The reduced echelon form of a matrix. We can use a
partitioned matrix to

2

6666664

1 0 0 0 ⇤ · · · ⇤
0 1 0 0 ⇤ · · · ⇤
0 0 1 0 ⇤ · · · ⇤
0 0 0 1 ⇤ · · · ⇤
0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0

3

7777775
=


I4 F

0 0

�

This is useful when studying the null space of A, as we will see later in
this course.
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Row Column Method

Recall that a row vector times a column vector (of the right dimensions)
is a scalar. For example,

⇥
1 1 1

⇤
2

4
1
0
2

3

5 =

This is the row column matrix multiplication method from Section 2.1.

Let A be m ⇥ n and B be n ⇥ p matrix. Then, the (i, j)
entry of AB is

rowi A · colj B.

This is the Row Column Method for matrix multiplication.

Theorem

Partitioned matrices can be multiplied using this method, as if each block
were a scalar (provided each block has appropriate dimensions).
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Example of Row Column Method

Recall, using our formula for a 2⇥ 2 matrix,


a b

0 c

��1

= 1
ac


c �b

0 a

�
.

Example: Suppose A 2 Rn⇥n, B 2 Rn⇥n, and C 2 Rn⇥n are invertible

matrices. Construct the inverse of


A B

0 C

�
.
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Section 2.5 : Matrix Factorizations

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra

“Mathematical reasoning may be regarded rather schematically as the
exercise of a combination of two facilities, which we may call intuition and

ingenuity.” - Alan Turing

The use of the LU Decomposition to solve linear systems was one of the
areas of mathematics that Turing helped develop.
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Topics and Objectives

Topics

We will cover these topics in this section.

1. The LU factorization of a matrix

2. Using the LU factorization to solve a system

3. Why the LU factorization works

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Compute an LU factorization of a matrix.

2. Apply the LU factorization to solve systems of equations.

3. Determine whether a matrix has an LU factorization.
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Motivation

Recall that we could solve A~x = ~b by using

~x = A
�1~b

This requires computation of the inverse of an n⇥ n matrix, which
is especially di�cult for large n.

Instead we could solve A~x = ~b with Gaussian Elimination, but this is
not e�cient for large n

There are more e�cient and accurate methods for solving linear
systems that rely on matrix factorizations.
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Matrix Factorizations

A matrix factorization, or matrix decomposition is a factorization
of a matrix into a product of matrices.

Factorizations can be useful for solving A~x = ~b, or understanding
the properties of a matrix.

We explore a few matrix factorizations throughout this course.

In this section, we factor a matrix into lower and into upper

triangular matrices.
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Triangular Matrices

A rectangular matrix A is upper triangular if ai,j = 0 for i > j.
Examples:

✓
1 5 0
0 2 4

◆
,

0

BB@

1 0 0 1
0 2 1 0
0 0 1 0
0 0 0 1

1

CCA ,

0

BB@

2
0
0
0

1

CCA

A rectangular matrix A is lower triangular if ai,j = 0 for i < j.
Examples:

✓
1 0 0
3 2 0

◆
,

0

BB@

3 0 0 0
1 1 0 0
0 0 1 0
0 2 0 1

1

CCA ,

0

BB@

1
2
1
2

1

CCA

Ask: Can you name a matrix that is both upper and lower triangular?
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The LU Factorization

If A is an m ⇥ n matrix that can be row reduced to echelon form
without row exchanges, then A = LU . L is a lower triangular m⇥m

matrix with 1’s on the diagonal, U is an echelon form of A.

Theorem

Example: If A 2 R3⇥2, the LU factorization has the form:

A = LU =

0

@
1 0 0
⇤ 1 0
⇤ ⇤ 1

1

A

0

@
⇤ ⇤
0 ⇤
0 0

1

A
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Why We Can Compute the LU Factorization

Suppose A can be row reduced to echelon form U without interchanging
rows. Then,

Ep · · ·E1A = U

where the Ej are matrices that perform elementary row operations. They
happen to be lower triangular and invertible, e.g.

2

4
1 0 0
0 1 0
2 0 1

3

5
�1

=

2

4
1 0 0
0 1 0

�2 0 1

3

5

Therefore,
A = E

�1
1 · · ·E�1

p| {z }
=L

U = LU.
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Using the LU Decomposition

Goal: given A and ~b, solve A~x = ~b for ~x.

Algorithm: construct A = LU , solve A~x = LU~x = ~b by:

1. Forward solve for ~y in L~y = ~b.

2. Backwards solve for x in U~x = ~y.

Example: Solve the linear system whose LU decomposition is given.

A = LU =

0

BB@

1 0 0 0
1 1 0 0
0 2 1 0
0 0 1 1

1

CCA

0

BB@

1 0 0
0 2 1
0 0 2
0 0 0

1

CCA , ~b =

0

BB@

2
3
2
0

1

CCA

Section 2.5 Slide 47

↑

1R4X3

Ay = 5

Lux = 5

"y

&See
110100 % y1 = 2

↓I 021 y, + yz = 3
, ye = / Forward

o O 2y2+ s = 2
, Y = 0 solving

Yz + Y4 = 0
- Y4 = 0



O
X1 = 2

↑ Backward
2· Y x +2x x2 = 1) Solving.I * 2 I

Xz = 0



An Algorithm for Computing LU

To compute the LU decomposition:

1. Reduce A to an echelon form U by a sequence of row replacement
operations, if possible.

2. Place entries in L such that the same sequence of row operations
reduces L to I.

Note that

In MATH 1554, the only row replacement operation we can use is to
replace a row with a multiple of a row above it.

More advanced linear algebra courses address this limitation.

Example: Compute the LU factorization of A.

A =

0

@
4 �3 �1 5

�16 12 2 �17
8 �6 �12 22

1

A
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Summary

To solve A~x = LU~x = ~b,
1. Forward solve for ~y in L~y = ~b.
2. Backwards solve for ~x in U~x = ~y.

To compute the LU decomposition:
1. Reduce A to an echelon form U by a sequence of row replacement

operations, if possible.
2. Place entries in L such that the same sequence of row operations

reduces L to I.

The textbook o↵ers a di↵erent explanation of how to construct the
LU decomposition that students may find helpful.

Another explanation on how to calculate the LU decomposition that
students may find helpful is available from MIT OpenCourseWare:
www.youtube.com/watch?v=rhNKncraJMk
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Section 2.8 : Subspaces of Rn

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra
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Topics and Objectives

Topics

We will cover these topics in this section.

1. Subspaces, Column space, and Null spaces

2. A basis for a subspace.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Determine whether a set is a subspace.

2. Determine whether a vector is in a particular subspace, or find a
vector in that subspace.

3. Construct a basis for a subspace (for example, a basis for Col(A))

Motivating Question

Given a matrix A, what is the set of vectors ~b for which we can solve
A~x = ~b?
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Subsets of Rn

A subset of Rn is any collection of vectors that are in Rn.

Definition
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Subspaces in Rn

A subsetH of Rn is a subspace if it is closed under scalar multiplies
and vector addition. That is: for any c 2 R and for ~u,~v 2 H,
1. c ~u 2 H

2. ~u+ ~v 2 H

Definition

Note that condition 1 implies that the zero vector must be in H.
Example 1: Which of the following subsets could be a subspace of R2?
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The Column Space and the Null Space of a Matrix

Recall: for ~v1, . . . ,~vp 2 Rn, that Span{~v1, . . . ,~vp} is:

This is a subspace, spanned by ~v1, . . . ,~vp.

Given an m⇥ n matrix A =
⇥
~a1 · · · ~an

⇤

1. The column space of A, ColA, is the subspace of Rm

spanned by ~a1, . . . ,~an.

2. The null space of A, NullA, is the subspace of Rn spanned
by the set of all vectors ~x that solve A~x = ~0.

Definition
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Example

Is ~b in the column space of A?

A =

2

4
1 �3 �4

�4 6 �2
�3 7 6

3

5 ⇠

2

4
1 �3 �4
0 �6 �18
0 0 0

3

5 , ~b =

0

@
3
3
�4

1

A
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Example 2 (continued)

Using the matrix on the previous slide: is ~v in the null space of A?

~v =

0

@
�5�
�3�
�

1

A , � 2 R
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Basis

A basis for a subspace H is a set of linearly independent
vectors in H that span H.

Definition

Example

The set H = {

0

BB@

x1

x2

x3

x4

1

CCA 2 R4 | x1 + 2x2 + x3 + 5x4 = 0} is a subspace.

a) H is a null space for what matrix A?

b) Construct a basis for H.
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Example

Construct a basis for NullA and a basis for ColA.

A =

2

4
�3 6 �1 0
1 �2 2 0
2 �4 5 0

3

5 ⇠

2

4
1 �2 0 0
0 0 1 0
0 0 0 0

3

5
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Additional Example

Let V =

⇢✓
a

b

◆
2 R2 | ab = 0

�
.

1. Give an example of a vector that is in V .

2. Give an example of a vector that is not in V .

3. Is the zero vector in V ?

4. Is V a subspace?
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Section 2.9 : Dimension and Rank

Chapter 2 : Matrix Algebra

Math 1554 Linear Algebra
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Topics and Objectives

Topics

We will cover these topics in this section.

1. Coordinates, relative to a basis.

2. Dimension of a subspace.

3. The Rank of a matrix

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Calculate the coordinates of a vector in a given basis.

2. Characterize a subspace using the concept of dimension (or
cardinality).

3. Characterize a matrix using the concepts of rank, column space, null
space.

4. Apply the Rank, Basis, and Matrix Invertibility theorems to describe
matrices and subspaces.
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Choice of Basis

Key idea: There are many possible choices of basis for a subspace. Our
choice can give us dramatically di↵erent properties.

Example: sketch ~b1 +~b2 for the two di↵erent coordinate systems below.

~b2

~b1

~b2

~b1
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Coordinates

Definition

Let B = {~b1, . . . ,~bp} be a basis for a subspace H. If ~x is in H, then
coordinates of ~x relative B are the weights (scalars) c1, . . . , cp so that

~x = c1
~b1 + · · ·+ cp

~bp

And

[x]B =

2

64
c1
...

cp

3

75

is the coordinate vector of ~x relative to B, or the B-coordinate
vector of ~x
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Example 1

Let ~v1 =

2

4
1
0
1

3

5, ~v2 =

2

4
1
1
1

3

5, and ~x =

2

4
5
3
5

3

5. Verify that ~x is in the span of

B = {~v1,~v2}, and calculate [~x]B.
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Dimension

Definition

The dimension (or cardinality) of a non-zero subspace H, dimH, is the
number of vectors in a basis of H. We define dim{0} = 0.

Theorem

Any two choices of bases B1 and B2 of a non-zero subspace H have the

same dimension.

Examples:

1. dimRn =

2. H = {(x1, . . . , xn) : x1 + · · ·+ xn = 0} has dimension

3. dim(NullA) is the number of

4. dim(ColA) is the number of
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Rank

The rank of a matrix A is the dimension of its column space.

Definition

Example 2: Compute rank(A) and dim(Nul(A)).

2

664

2 5 �3 �4 8
4 7 �4 �3 9
6 9 �5 2 4
0 �9 6 5 �6

3

775 ⇠ · · · ⇠

2

664

2 5 �3 �4 8
0 �3 2 5 �7
0 0 0 4 �6
0 0 0 0 0

3

775
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Rank, Basis, and Invertibility Theorems

Theorem (Rank Theorem)

If a matrix A has n columns, then RankA+ dim(NulA) = n.

Theorem (Basis Theorem)

Any two bases for a subspace have the same dimension.

Theorem (Invertibility Theorem)

Let A be a n⇥ n matrix. These conditions are equivalent.

1. A is invertible.

2. The columns of A are a basis for Rn
.

3. ColA = Rn
.

4. rankA = dim(ColA) = n.

5. NullA = {0}.
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Examples

If possible give an example of a 2⇥ 3 matrix A, that is in RREF and has
the given properties.

a) rank(A) = 3

b) rank(A) = 2

c) dim(Null(A)) = 2

d) NullA = {0}
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Midterm 2. Your initials:

You do not need to justify your reasoning for questions on this page.

3. (2 points) Let H be a subspace of R3
that is composed of all vectors ~x = (x1, x2, x3) that

satisfy the following two equations:

x1 + 3x2 � x3 = 0

2x1 + 5x2 + x3 = 0

What is the dimension of H?

dimH =

4. (2 points) Let V be a subspace of R3
that is spanned by the vectors

8
<

:

0

@
1
1
1

1

A ,

0

@
0
0
0

1

A ,

0

@
2
0
1

1

A ,

0

@
1
3
2

1

A ,

0

@
3
�3
0

1

A

9
=

;

What is the dimension of V?

dimV =

1

H = Ml(A) A = 135,)

- -

E

A = 1! V = G(A)

dim(W) = # of Pirots
-

I

11


