Section 5.3 : Diagonalization

Chapter 5: Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example A^k , for large k.

But: multiplying two $n \times n$ matrices requires roughly n^3 computations. Is there a more efficient way to compute A^k ?

Section 5.3 Slide 23

Topics and Objectives

Topics

- 1. Diagonal, similar, and diagonalizable matrices
- 2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix.
- 2. Apply diagonalization to compute matrix powers.

A, B similar
$$\Rightarrow$$
 A = P.B.P \Rightarrow def(A- λ I) = def(B- λ I)

Similar Matrices

Definition

Two $n \times n$ matrices A and B are **similar** if there is a matrix P so that

Theorem

If A and B similar, then they have the same characteristic polynomial. 2 etgen values

If time permits, we will explain or prove this theorem in lecture. Note:

- Our textbook introduces similar matrices in Section 5.2, but doesn't have exercises on this concept until 5.3.
- ullet Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

Diagonal Matrices

A matrix is **diagonal** if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.

diagonal matrices.
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad \begin{bmatrix} 2 \end{bmatrix}, \quad I_n, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

We'll only be working with diagonal square matrices in this course.

Powers of Diagonal Matrices

If A is diagonal, then A^k is easy to compute. For example,

$$A^{-1} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 3 & 0 \\ 0 & 0.5 \end{pmatrix}$$

$$= \begin{pmatrix} (3)^{-1} & 0 \\ 0 & (0.5)^{-1} \end{pmatrix} \qquad A^{2} = \begin{pmatrix} \frac{3}{3} & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} \frac{3}{3} & 0 \\ 0 & 0.5 \end{pmatrix} = \begin{pmatrix} \frac{3}{3} & 0 \\ 0 & (0.5)^{-1} \end{pmatrix}$$

$$A^{k} = \begin{pmatrix} \frac{3}{3} & 0 \\ 0 & (0.5)^{-1} \end{pmatrix} \qquad A^{k} = \begin{pmatrix} \frac{3}{3} & 0 \\ 0 & (0.5)^{-1} \end{pmatrix}$$

But what if A is not diagonal?

Diagonalization

Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is **diagonalizable** if it is similar to a diagonal matrix, D. That is, we can write

$$A = PDP^{-1}$$

$$D \text{ Why this is good?}$$

$$A^{2} = (PDP^{1}) \cdot (PDP^{1})$$

$$= P \cdot D \cdot D \cdot P^{1} = P \cdot D^{2} \cdot P^{1}.$$

$$A^{4} = P \cdot D \cdot P^{1} = P \cdot D^{2} \cdot P^{1}.$$

$$A \cdot P = P \cdot D$$
Section 5.3 Slide 27
$$A \cdot P = P \cdot D$$

$$= \left[\overrightarrow{v_{1}} \cdot \overrightarrow{v_{n}}\right] = \left[\overrightarrow{v_{1}} \cdot \overrightarrow{v_{n}}\right] \cdot \left[\overrightarrow{o_{1}} \cdot \overrightarrow{o_{2}}\right].$$

$$= \left[\overrightarrow{o_{1}}\overrightarrow{v_{1}} \cdot \overrightarrow{o_{2}}\overrightarrow{v_{2}} \cdot \cdots \cdot \overrightarrow{o_{n}}\right]$$

$$= \left[\overrightarrow{o_{1}}\overrightarrow{v_{1}} \cdot \overrightarrow{o_{2}}\overrightarrow{v_{2}} \cdot \cdots \cdot \overrightarrow{o_{n}}\right]$$

 \Rightarrow $A\vec{v}_1 = \alpha_1\vec{v}_1$, $A\vec{v}_2 = \alpha_2\vec{v}_2$, -- $A\vec{v}_n = \alpha_n\vec{v}_n$

 $P = [\overrightarrow{v_1}, -..., \overrightarrow{v_r}]$ invertible

Eigenvectors $A = P \cdot DP'$

Diagonalization

Theorem

If A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors.

Note: the symbol \Leftrightarrow means " if and only if ".

Also note that $A = PDP^{-1}$ if and only if

$$A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}^{-1}$$

where $\vec{v}_1, \dots, \vec{v}_n$ are linearly independent eigenvectors, and $\lambda_1, \dots, \lambda_n$ are the corresponding eigenvalues (in order).

Example 1

Diagonalize if possible.

$$\begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix} = A$$

D Eigenvalues:
$$\lambda = 2, -1$$
, because A 75 upper triangular. $D = \begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix}$

① Eigenvectors:

(i)
$$\lambda = 2$$

$$E_2 = \text{Null}(A - 2I) = \left\{ \text{C.} \begin{bmatrix} 1 \\ 0 \end{bmatrix} : \text{C.} \text{C.} \right\}$$

$$A - 2I = \begin{bmatrix} 0 & 6 \\ 0 & -3 \end{bmatrix} \xrightarrow{\text{R.}} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, 0.00, +1-00, =0$$

Section 5.3 Slide 29
$$\sqrt{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(ii)
$$\lambda = -1$$
 $E_{-1} = Null (A+I) = \begin{cases} c \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix} \end{cases}$

$$A + I = \begin{bmatrix} 3 & 6 \\ 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

$$\overrightarrow{v}_{z} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Example 2

Diagonalize if possible.

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

Eigenruhe
$$\lambda = 3$$
.

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = 3 \cdot I$$

$$A \neq P \cdot D P^{-1} = P \cdot gI - P^{-1} = gI$$

Thin If
$$\lambda_1, --- \lambda_n$$
 all distinct eigenvalues then $d \cup 1, --- \cdot \cup 1$ treaty indep.

Distinct Eigenvalues

If A is $n \times n$ and has n distinct eigenvalues, then A is diagonalizable.

Why does this theorem hold?

Is it necessary for an $n \times n$ matrix to have n distinct eigenvalues for it to be diagonalizable?

A E IR is diagonalitable
You can find in litearly indep. eigenvectors
eigenvectors that form a basis for 12 ⁿ
$\Rightarrow d_1 + \cdots + d_k = n \Rightarrow d_1 = a_1, d_2 = a_2, \cdots, d_k = a_k$
Special Case: Distinct eigenvalues
Distinct n eigenvalues: 21, 22; , 2n
Distinct n eigenvalues: $\chi_1, \chi_2, \dots, \chi_n$ $\Rightarrow \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} \text{thenry indep} \Rightarrow A \text{ is diagonalizable}.$
In general: $\lambda_1, \lambda_2, \dots, \lambda_k$ distinct $k < n$ eigenvalues -1 -1 -1 -1 -1 -1 -1 -1
Characteristic poly = det $(A-\lambda I) = (-1)(\lambda-\lambda I)(\lambda-\lambda I) - (\lambda-\lambda K)$
$d_i = \frac{\text{degree}}{n} = \frac{\alpha_1 + \alpha_2 + \cdots + \alpha_k}{n}$
- 1 (Geo. Multi. = dim (Null (A-A;I)) < a;
for his = # .f lin. indep eighweders Th Exi
d1 + d2+ + dk = Max # of In. Indep.
Eigenerectus

Non-Distinct Eigenvalues

Theorem. Suppose

- A is $n \times n$
- A has distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, $k \leq n$
- $a_i = \text{algebraic multiplicity of } \lambda_i$
- ullet $d_i=$ dimension of λ_i eigenspace ("geometric multiplicity")

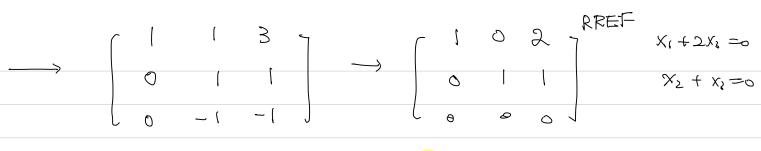
Then

- 1. $d_i \leq a_i$ for all i
- 2. A is diagonalizable $\Leftrightarrow \Sigma d_i = n \Leftrightarrow d_i = a_i$ for all i
- 3. A is diagonalizable \Leftrightarrow the eigenvectors, for all eigenvalues, together form a basis for \mathbb{R}^n .

Example 3

The eigenvalues of A are $\lambda=3,1.$ If possible, construct P and D such that AP=PD.

$$A = \begin{pmatrix} 7 & 4 & 16 \\ 2 & 5 & 8 \\ -2 & -2 & -5 \end{pmatrix}$$



$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ -1 \\ x_3 \end{bmatrix}$$

$$D = \begin{bmatrix} 3 & 0 & 0 & 7 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} -1 & -4 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} v_1 & v_3 & v_2 \end{bmatrix}$$

$$= \begin{bmatrix} v_2 & v_3 & v_1 \end{bmatrix}$$

Additional Example (if time permits)

Note that

$$\vec{x}_k = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \vec{x}_{k-1}, \quad \vec{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad k = 1, 2, 3, \dots$$

generates a well-known sequence of numbers. $\sqrt{\mathcal{R}_i}$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1$$

Use a diagonalization to find a matrix equation that gives the n^{th} number in this sequence.

$$\{1, 1, 2, 3, 5, 8, 13, 21, 345\}$$
, $\{3, 2, 3, 5, 8, 13, 21, 345\}$.

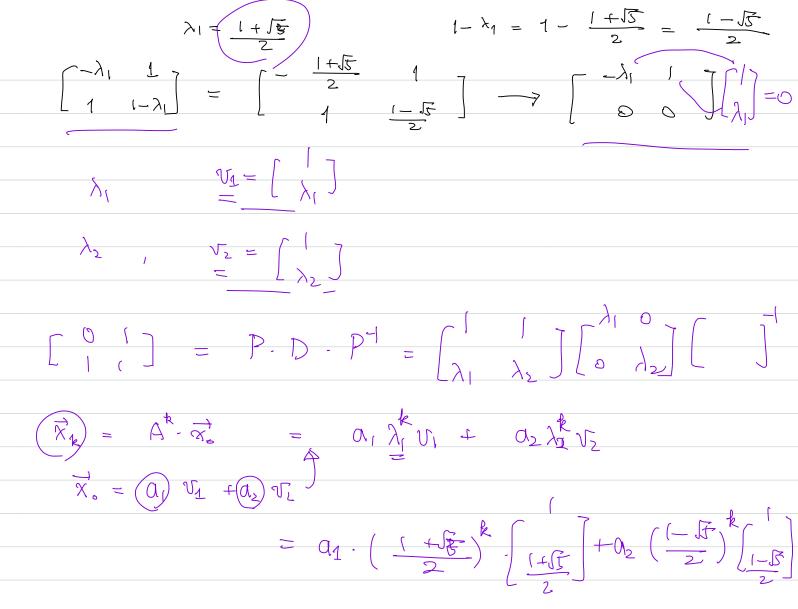
Fibonacci Sequence.

Section 5.3 Slide 34

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
Eighn values:
$$1 \cdot \lambda^2 - (0+1) \lambda + (0 \cdot 1 - (-1)) = \lambda^2 - \lambda - 1 = 0$$

$$\lambda = \frac{1 \pm \sqrt{1-4.4}}{2.1} = \frac{1 \pm \sqrt{5}}{2} = \lambda_1, \lambda_1$$

$$\lambda = \lambda_1$$
 Null $(A - \lambda_1 I)$



Recall
$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$
 basis for \mathbb{R}^n
For $\vec{x} \in \mathbb{R}^n$, $[\vec{x}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \Leftrightarrow \vec{x} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$

Basis of Eigenvectors

Express the vector $\vec{x}_0 = \begin{vmatrix} 4 \\ 5 \end{vmatrix}$ as a linear combination of the vectors

$$ec{v}_1 = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $ec{v}_2 = egin{bmatrix} 1 \\ -1 \end{bmatrix}$ and find the coordinates of $ec{x}_0$ in the basis

$$\mathcal{B} = \{\vec{v}_1, \vec{v}_{\mathbf{p}}\}.$$

$$\frac{1}{x_0} = \left(\frac{4}{5}\right) = C_1\left[\frac{1}{1}\right] + C_2\left[\frac{1}{1}\right] = \left[\frac{1}{1}\right]\left[\frac{C_1}{C_2}\right]$$

$$[\vec{x}_0]_{\mathcal{B}} = \begin{bmatrix} 0/2 \\ -\frac{1}{2} \end{bmatrix}$$

$$A = PDP^{-1}$$
, for $k = 1, 2, \dots$

Let
$$P = [\vec{v}_1 \ \vec{v}_2]$$
 and $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, and find $[A^k \vec{x}_0]_{\mathcal{B}}$ where $A = PDP^{-1}$, for $k = 1, 2, \ldots$ eigenvectors of $A = \vec{v}_1$, \vec{v}_2
$$[A^k \vec{x}_0]_{\mathcal{B}} = \begin{bmatrix} \frac{q}{2} & 1 \\ -\frac{1}{2} & (-1)^k \end{bmatrix} = \begin{cases} \frac{q}{2} & k : \text{ add} \\ -\frac{1}{2} & k : \text{ even} \end{cases}$$

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 k= even

Section 5.3

$$\left[\overrightarrow{x} \right]_{\mathcal{B}} = \mathcal{P}^{\mathsf{T}} \cdot \overrightarrow{x}$$

$$A^{\dagger} = (P \cdot D P^{-1})^{\dagger}$$

$$\begin{bmatrix}
A^{k} \vec{x}_{o} \end{bmatrix}_{0} = P^{d} \cdot A^{k} \cdot \vec{x}_{o}$$

$$= P^{k} \cdot P^{d} \cdot \vec{x}_{o}$$

$$= D^{k} \cdot (P^{d}\vec{x}_{o}) = D^{k} \cdot (\vec{x}_{o})_{B}$$

$$= P^{k} \cdot (P^{d}\vec{x}_{o}) = D^{k} \cdot (\vec{x}_{o})_{B}$$

$$= P^{k} \cdot (P^{d}\vec{x}_{o}) = D^{k} \cdot (\vec{x}_{o})_{B}$$

Basis of Eigenvectors - part 2

Let
$$\vec{x}_0 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
, $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as before.

Again define $P=[\vec{v}_1\ \vec{v}_2]$ but this time let $D=\begin{bmatrix}1&0\\0&-1/2\end{bmatrix}$, and now find $[A^k\vec{x}_0]_{\mathcal{B}}$ where $A=PDP^{-1}$, for $k=1,2,\ldots$

$$[A^k \vec{x}_0]_{\mathcal{B}} =$$

Basis of Eigenvectors - part 3

Let
$$\vec{x}_0 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
, $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as before.

Again define $P=[\vec{v}_1\ \vec{v}_2]$ but this time let $D=\begin{bmatrix} 2 & 0 \\ 0 & 3/2 \end{bmatrix}$, and now find $[A^k\vec{x}_0]_{\mathcal{B}}$ where $A=PDP^{-1}$, for $k=1,2,\ldots$

$$[A^k \vec{x}_0]_{\mathcal{B}} =$$

Chapter 5: Eigenvalues and Eigenvectors

5.5 : Complex Eigenvalues

Topics and Objectives

Topics

- 1. Complex numbers: addition, multiplication, complex conjugate
- 2. Complex eigenvalues and eigenvectors.
- 3. Eigenvalue theorems

Learning Objectives

- 1. Use eigenvalues to determine identify the rotation and dilation of a linear transform.
- 2. Rotation dilation matrices.
- 3. Find complex eigenvalues and eigenvectors of a real matrix.
- 4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?

Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square roots of negative numbers. For example:

$$x^2 + 1 = 0$$

 $\chi^2 = -1$

The roots of this equation are:

 $X = \pm \sqrt{-1}$

We usually write $\sqrt{-1}$ as i (for "imaginary").

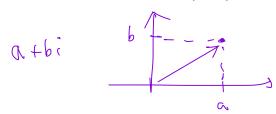
$\dot{a} = \sqrt{-1}$

Addition and Multiplication

The imaginary (or complex) numbers are denoted by \mathbb{C} , where $\mathbb{C} = \{a+bi \mid a,b \text{ in } \mathbb{R}\}$

$$\mathbb{C} = \{ a + bi \mid a, b \text{ in } \mathbb{R} \}$$

We can identify \mathbb{C} with \mathbb{R}^2 : $a + bi \leftrightarrow (a, b)$



We can add and multiply complex numbers as follows:

= 1+52.

$$(2-3i) + (-1+i) = (2+(-1)) + ((-3)+1) \cdot \hat{i}$$

$$(2-3i)(-1+i) = 2 \cdot (-1) + 2 \cdot \hat{i}$$

$$= (-2+3) + (2+3) \cdot \hat{i}$$
Vector addition

Slide 4 Section 5.5

Complex Conjugate, Absolute Value, Polar Form

We can **conjugate** complex numbers:
$$\overline{a+bi} = \underline{a-bi}$$

The absolute value of a complex number:
$$|a+bi| = \sqrt{(a+bi)} = \sqrt{a^2+b^2}$$

$$(a+bi)(a+bi) = (a+bi) \cdot (a-bi)$$

$$= a^2 - (bi)^2 = a^2 - b^2 = a^2 + b^2 > 0$$

We can write complex numbers in **polar form**: $a + ib = r(\cos \phi + i \sin \phi)$

Section 5.5 Slide 5
$$r = \sqrt{\alpha^2 + b^2} = |z|$$

$$7 = \alpha + b\overline{c}$$

$$7 = \sqrt{\alpha^2 + b^2} = |z|$$

$$7 = \alpha + b\overline{c}$$

$$9 = \frac{b}{r}$$

$$9 = r \cdot \sin \phi$$

$$\overline{Z} = \Omega + bi = r \cdot Cos \phi + i \cdot r \cdot sin \phi = r \cdot (Cos \phi + i sin \phi)$$

$$= 121 \cdot (Cos \phi + i sin \phi).$$

Complex Conjugate Properties

1

If x and y are complex numbers, $\vec{v} \in \mathbb{C}^n$, it can be shown that:

$$\bullet \overline{(x+y)} = \overline{x} + \overline{y}$$

•
$$\overline{A}\overline{v} = A\overline{v}$$

•
$$Im(x\overline{x}) = 0$$
. Decays

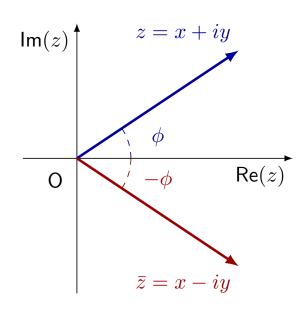
$$X = \alpha + \beta^2$$

$$X = \alpha + \beta^2$$

Example True or false: if x and y are complex numbers, then

Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.



Euler's Formula:
$$e^{i\phi} = \cos\phi + i \sin\phi$$

$$\frac{2}{3} = 0.4 \text{ bis}$$

$$= 121 - (Cos \phi + i sin \phi)$$

$$= 121 e^{i\phi}$$

$$z_1 \cdot z_2 = (|z_1| \cdot e^{i\phi_1}) \cdot (|z_2| \cdot e^{i\phi_2})$$

$$= \frac{1}{21 \cdot 121} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

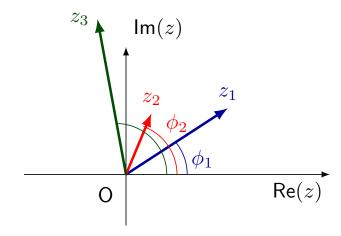
$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1 + \phi_2)$$

$$= \frac{1}{21 \cdot 21} \cdot e^{\lambda} (\phi_1$$

Euler's Formula

Suppose z_1 has angle ϕ_1 , and z_2 has angle ϕ_2 .



The product z_1z_2 has angle $\phi_1 + \phi_2$ and modulus |z||w|. Easy to remember using Euler's formula.

$$z = |z| e^{i\phi}$$

The product z_1z_2 is:

$$z_3 = z_1 z_2 = (|z_1| e^{i\phi_1})(|z_2| e^{i\phi_2}) = |z_1| |z_2| e^{i(\phi_1 + \phi_2)}$$

Section 5.5 Slide 8

Complex Numbers and Polynomials

$$a_n \cdot x^n + a_{n+1} \cdot x^{n+1} + \cdots + a_{1-1} \cdot x + a_0 = 0$$

Theorem: Fundamental Theorem of Algebra

Every polynomial of degree n has exactly n complex roots, counting multiplicity.

$$\frac{\lambda_1 \cdot - - \cdot \cdot \lambda_n \in \mathbb{C}}{\lambda_1 \cdot - - \cdot \cdot \lambda_n \cdot \times - \lambda_n \cdot = 0}$$

Theorem

- ao,a,,---, an ER

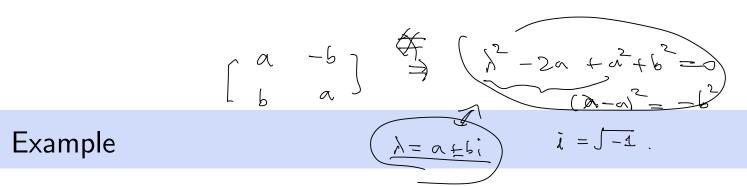
- 1. If $\lambda \in \mathbb{C}$ is a root of a real polynomial p(x), then the conjugate $\overline{\lambda}$ is also a root of p(x).
- 2. If λ is an eigenvalue of real matrix A with eigenvector \vec{v} , then $\bar{\lambda}$ is an eigenvalue of A with eigenvector \vec{v} .

Example

real $A \in \mathbb{R}^{7 \times 7}$

Four of the eigenvalues of a 7×7 matrix are -2, 4+i, -4-i, and i. What are the other eigenvalues?

A is diagonalizable.



The matrix that rotates vectors by $\phi = \pi/4$ radians about the origin, and then scales (or dilates) vectors by $r = \sqrt{2}$, is

$$A = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

What are the eigenvalues of A? Find an eigenvector for each eigenvalue.

Char. Eqn:
$$\chi^{2} - (1+1)\lambda + (1\cdot1-(-1)\cdot1) = 0$$

$$\chi^{2} - 2\lambda + \lambda = 0$$

$$\chi^{2} - 2\lambda + \lambda = 0$$

$$(\lambda - 1)^{2} = -\lambda$$

$$\lambda - \lambda = \frac{1}{4}$$

$$\lambda = 1 + \lambda$$

$$\lambda = 1 + \lambda$$
Section 5.5 Slide 11
$$A - \lambda_{1}I = A - (1+\lambda_{1})I = \begin{bmatrix} 1 - (1+\lambda_{1}) & -1 \\ 1 & 1 - (1+\lambda_{1}) \end{bmatrix}$$

$$= \begin{bmatrix} -\lambda_{1} & -\lambda_{1} \\ 1 & -\lambda_{2} \end{bmatrix} \rightarrow \begin{bmatrix} -\lambda_{1} & -\lambda_{1} \\ 1 & -\lambda_{1} \end{bmatrix} = 0$$

$$\sqrt{1} = \begin{bmatrix} \lambda_{1} \\ 1 \end{bmatrix}$$

$$\lambda_{2} = 1 - \lambda_{1} \Rightarrow \sqrt{2} = \sqrt{1} = \begin{bmatrix} \lambda_{1} \\ 1 \end{bmatrix} = \begin{bmatrix} -\lambda_{1} \\ 1 \end{bmatrix}$$

Example

The matrix in the previous example is a special case of this matrix:

$$C = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Calculate the eigenvalues of ${\cal C}$ and express them in polar form.

Example

Find the complex eigenvalues and an associated complex eigenvector for each eigenvalue for the matrix.

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$$

Section 6.1 : Inner Product, Length, and Orthogonality

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

Topics

- 1. Dot product of vectors
- 2. Magnitude of vectors, and distances in \mathbb{R}^n
- 3. Orthogonal vectors and complements
- 4. Angles between vectors

Learning Objectives

- 1. Compute (a) dot product of two vectors, (b) length (or magnitude) of a vector, (c) distance between two points in \mathbb{R}^n , and (d) angles between vectors.
- 2. Apply theorems related to orthogonal complements, and their relationships to Row and Null space, to characterize vectors and linear systems.

Motivating Question

For a matrix A, which vectors are orthogonal to all the rows of A? To the columns of A?

Section 6.1 Slide 2

The Dot Product

The dot product between two vectors, \vec{u} and \vec{v} in \mathbb{R}^n , is defined as

Example 1: For what values of k is $\vec{u} \cdot \vec{v} = 0$?

$$\vec{u} = \begin{pmatrix} -1 \\ 3 \\ k \\ 2 \end{pmatrix}, \qquad \vec{v} = \begin{pmatrix} 4 \\ 2 \\ 1 \\ -3 \end{pmatrix}$$

$$\vec{u} \cdot \vec{v} = \begin{bmatrix} -1 & 3 & k & 2 \end{bmatrix} \cdot \begin{pmatrix} 4 \\ 2 \\ 1 \\ -3 \end{pmatrix}$$

$$= (-1) \cdot k + 3 \cdot 2 + k \cdot 1 + 2 \cdot (-3)$$

$$= -k + k + k - k$$

$$= k - k = 0 \qquad k = k.$$

Properties of the Dot Product

Section 6.1

The dot product is a special form of matrix multiplication, so it inherits linear properties.

Theorem (Basic Identities of Dot Product)

Let $\vec{u}, \vec{v}, \vec{w}$ be three vectors in \mathbb{R}^n , and $c \in \mathbb{R}$.

1. (Symmetry)
$$\vec{u} \cdot \vec{w} =$$
 $\overrightarrow{\Box} \cdot \overrightarrow{\Box} \cdot \overrightarrow{\Box}$

2. (Linear in each vector)
$$(\overrightarrow{v} + \overrightarrow{w}) \cdot \overrightarrow{u} = \underline{\overrightarrow{v}} \cdot \overrightarrow{u} + \underline{\overrightarrow{w}} \cdot \overline{\overrightarrow{u}}$$
3. (Scalars) $(c\overrightarrow{u}) \cdot \overrightarrow{w} = \underline{\overrightarrow{u}} \cdot (c\overrightarrow{w}) = c \cdot (\overrightarrow{u} \cdot \overrightarrow{w})$

3. (Scalars)
$$(c\vec{u}) \cdot \vec{w} = (\vec{u}) \cdot (\vec{u}) = (\vec{u}) \cdot \vec{u}$$

4. (Positivity) $\vec{u} \cdot \vec{u} \geq 0$, and the dot product equals _

$$\vec{U} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \qquad \vec{U} \cdot \vec{U} = \underbrace{u_1 + u_2 + \dots + u_n}_{> 0} > 0$$

$$\vec{U} \cdot \vec{U} = \underbrace{u_1 + u_2 + \dots + u_n}_{> 0} > 0$$

$$\vec{U} \cdot \vec{U} = \vec{U} \cdot \vec{U} = \vec$$

$$\vec{U} \cdot \vec{V} = 0 \qquad \Rightarrow \qquad \vec{U} = \vec{D}$$

The Length of a Vector

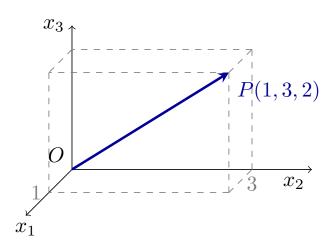
Definition

The **length** of a vector $\vec{u} \in \mathbb{R}^n$ is

$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

Example: the length of the vector \overrightarrow{OP} is

$$\sqrt{1^2 + 3^2 + 2^2} = \sqrt{14}$$



Section 6.1 Slide 5

Let \vec{u}, \vec{v} be two vectors in \mathbb{R}^n with $\|\vec{u}\| = 5$, $\|\vec{v}\| = \sqrt{3}$, and $\vec{u} \cdot \vec{v} = -1$. Compute the value of $\|\vec{u} + \vec{v}\|$.

Compute the value of
$$||u+v||$$
.

$$||\overrightarrow{u}|| = 5$$

$$||\overrightarrow{u}| + \overrightarrow{v}|| = (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v})$$

$$= \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{v}$$

$$= ||\overrightarrow{u}||^2 + 2 ||\overrightarrow{u}||^2$$

$$= 5$$

$$= 5$$

$$= 5$$

$$= 26$$

$$||\overrightarrow{u} + \overrightarrow{v}|| = 26$$

Length of Vectors and Unit Vectors

Note: for any vector \vec{v} and scalar c, the length of $c\vec{v}$ is

$$||c\vec{v}|| = |c| ||\vec{v}||$$

Definition

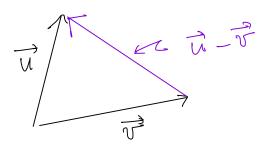
If $\vec{v} \in \mathbb{R}^n$ has length one, we say that it is a unit vector.

For example, each of the following vectors are unit vectors.

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{y} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \vec{v} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\vec{\nabla} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad ||\vec{\nabla}|| = \sqrt{1^2 + 3^2} = \sqrt{10}$$
Section 6.1 Slide 7
$$||\vec{\nabla}|| = \sqrt{1} = \sqrt{1} = \sqrt{10}$$

$$\vec{\nabla} = \sqrt{1} = \sqrt{10} = \sqrt$$

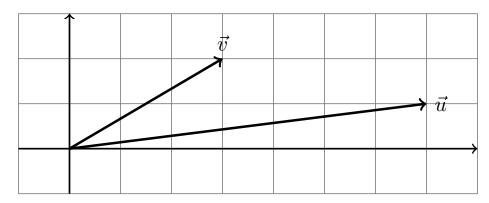


Distance in \mathbb{R}^n

Definition

For $\vec{u}, \vec{v} \in \mathbb{R}^n$, the **distance** between \vec{u} and \vec{v} is given by the formula

Example: Compute the distance from $\vec{u} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.



Section 6.1 Slide 8
$$d(t_{-3})^2 + ((-2)^2 = || U - \overline{V}||$$
$$= || (7-3)^2 + (1-2)^2 = || U - \overline{V}||$$

The Cauchy-Schwarz Inequality

Theorem: Cauchy-Bunyakovsky-Schwarz Inequality

For all \vec{u} and \vec{v} in \mathbb{R}^n ,

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||.$$

Equality holds if and only if $\vec{v} = \alpha \vec{u}$ for $\alpha = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$.

Proof: Assume $\vec{u} \neq 0$, otherwise there is nothing to prove.

Set
$$\alpha = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}$$
. Observe that $\vec{u} \cdot (\alpha \vec{u} - \vec{v}) = 0$. So

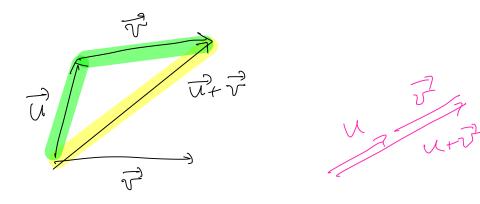
$$0 \le \|\alpha \vec{u} - \vec{v}\|^2 = (\alpha \vec{u} - \vec{v}) \cdot (\alpha \vec{u} - \vec{v})$$

$$= \alpha \vec{u} \cdot (\alpha \vec{u} - \vec{v}) - \vec{v} \cdot (\alpha \vec{u} - \vec{v})$$

$$= -\vec{v} \cdot (\alpha \vec{u} - \vec{v})$$

$$= \frac{\|\vec{u}\|^2 \|\vec{v}\|^2 - |\vec{u} \cdot \vec{v}|^2}{\|\vec{u}\|^2}$$

Section 6.1 Slide 9



The Triangle Inequality

Theorem: Triangle Inequality

For all \vec{u} and \vec{v} in \mathbb{R}^n ,

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|.$$

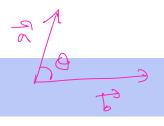
Proof:

$$\begin{aligned} \|\vec{u} + \vec{v}\|^2 &= (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \\ &= \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v} \\ &\leq \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\|\vec{u}\|\|\vec{v}\| \\ &= (\|\vec{u}\| + \|\vec{v}\|)^2 \end{aligned}$$

$$= (\|\vec{u}\| + \|\vec{v}\|)^2$$

$$= (\|\vec{v}\| + \|\vec{v}\|)^2$$

Section 6.1 Slide 10

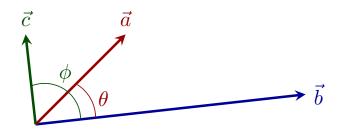


Theorem

$$|\vec{a} \cdot \vec{b}| = ||\vec{a}|| |\vec{b}|| \cos \theta$$
. Thus, if $|\vec{a} \cdot \vec{b}| = 0$, then:

- $\vec{a} \cdot \vec{b} = ||\vec{a}|||\vec{b}||\cos\theta. \text{ Thus, if } \vec{a} \cdot \vec{b} = 0, \text{ then:}$ $\vec{a} \text{ and/or } \vec{b} \text{ are } \underline{\text{Zero}} \text{ vectors, or}$ $\vec{a} \text{ and } \vec{b} \text{ are } \underline{\text{parpendicular}} \text{ } 0 = \frac{\pi}{2} \text{ } 1$

For example, consider the vectors below.

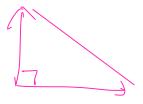


Orthogonality

Definition (Orthogonal Vectors)

Two vectors \vec{u} and \vec{w} are **orthogonal** if $\vec{u} \cdot \vec{w} = 0$. This is equivalent to:

Note: The zero vector in \mathbb{R}^n is orthogonal to every vector in \mathbb{R}^n . But we usually only mean non-zero vectors.



[5/33/23]

$$\vec{u}, \vec{v} \in \mathbb{R}^n \qquad \vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

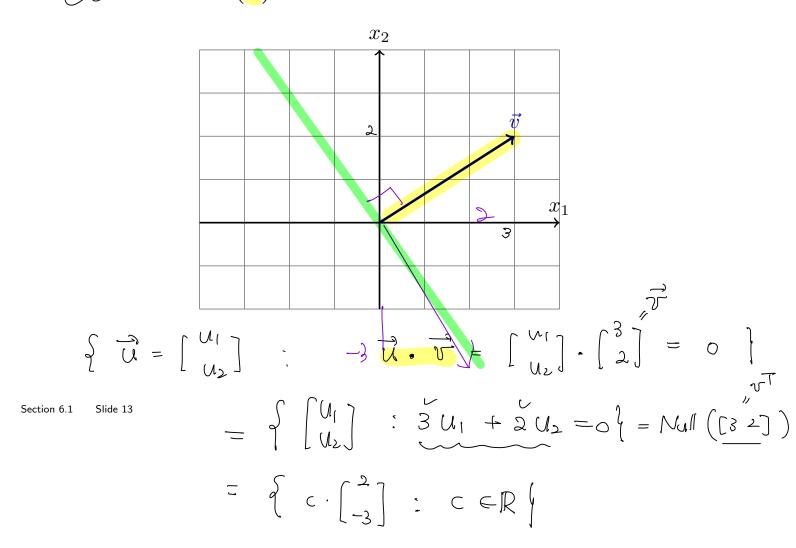
$$|| \vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$$

$$C-\varsigma: |\vec{u}\cdot\vec{v}| \leqslant |\vec{u}|\cdot|\vec{v}|$$

Angle:
$$Cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

$$\vec{U}$$
, \vec{v} are orthogonal \vec{v} \vec{v} = 0

Sketch the subspace spanned by the set of all vectors \vec{u} that are orthogonal to $\vec{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.



Orthogonal Compliments

Definitions

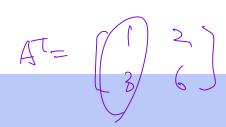
Let W be a subspace of \mathbb{R}^n . Vector $\vec{z} \in \mathbb{R}^n$ is **orthogonal** to W if \vec{z} is orthogonal to every vector in W.

The set of all vectors orthogonal to W is a subspace, the **orthogonal** compliment of W, or W^{\perp} or 'W perp.'

$$W^{\perp} = \{ \vec{z} \in \mathbb{R}^n : \vec{z} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \}$$

Previous Example

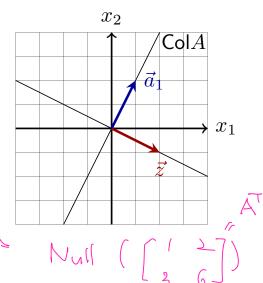
$$W = \text{Span} \left\{ \overrightarrow{V} \right\} = \left\{ c \cdot \left[\frac{3}{2} \right] : c \in \mathbb{R} \right\}$$
 $W' = \left\{ \overrightarrow{U} : \overrightarrow{$

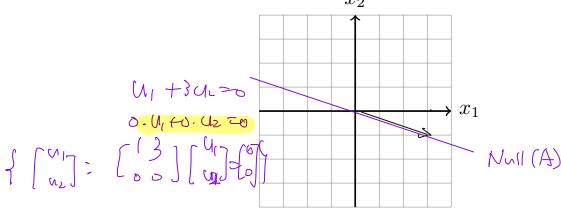


Example: suppose $A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$.

- ColA is the span of $\vec{a}_1 = \left(\begin{array}{c} 1 \\ 2 \end{array} \right)$
- $\operatorname{Col} A^{\perp}$ is the span of $\vec{z} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ Null (at) = Null ([2])=[-1] {

Sketch Null A and Null A^{\perp} on the grid below.



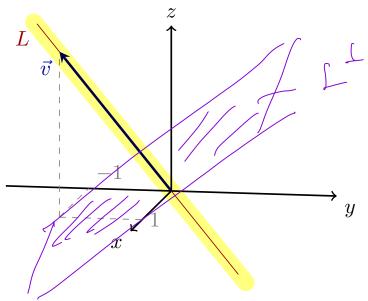


Section 6.1 Slide 15

$$Null (A) = Null ([]3]) = Null ([]3])$$

$$= \begin{cases} c \cdot []3] : c \in \mathbb{R} \end{cases}$$

Line L is a subspace of \mathbb{R}^3 spanned by $\vec{v}=\begin{pmatrix}1\\-1\\2\\2\end{pmatrix}$. Then the space L^\perp is a plane. Construct an equation of the plane L^\perp .



Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF

Section 6.1 Slide 16
$$L^{\perp} = \begin{cases} \overrightarrow{Z} = \begin{bmatrix} \overrightarrow{Z}_1 \\ \overrightarrow{Z}_2 \end{bmatrix}; \qquad \overrightarrow{Z} \cdot \overrightarrow{J} = 0 \end{cases}$$

$$= Null (T) = Null ([1 -1 2])$$

Row A

Row(A) = Col(AT)

Definition

RowA is the space spanned by the rows of matrix A.

We can show that

- dim(Row(A)) = dim(Col(A))
- ullet a basis for ${\sf Row} A$ is the pivot rows of A

Note that ${\rm Row}(A)={\rm Col}(A^T)$, but in general ${\rm Row}A$ and ${\rm Col}A$ are not related to each other

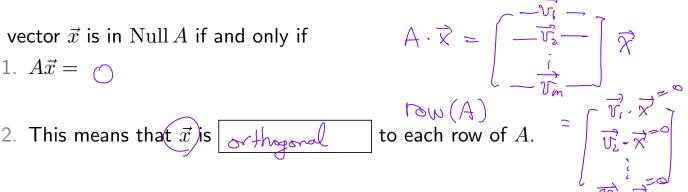
A Residence of the section 6.1 Slide 17

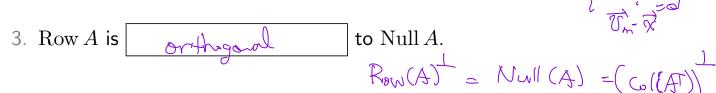
Residence of the section
$$R$$
 and R and R

Describe the Null(A) in terms of an orthogonal subspace.

A vector \vec{x} is in $\operatorname{Null} A$ if and only if

1.
$$A\vec{x} = \bigcirc$$





4. The dimension of $\operatorname{Row} A$ plus the dimension of $\operatorname{Null} A$ equals

The dimension of Row A plus the dimension of Null A equals
$$Null (A)^{\perp} = R_{\text{ow}} (A)$$

$$W = Null(A)$$

$$Jim(Null(A)) + Jim(Row(A)) = n$$

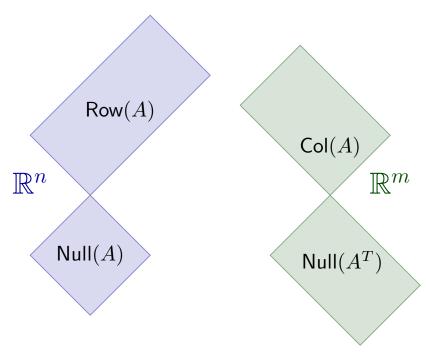
$$(Col(AT))^{\perp} = Row(A)^{\perp} = Null(A)$$

 $(Row(AT))^{\perp} = (Col(A))^{\perp} = Null(AT)$

Theorem (The Four Subspaces)

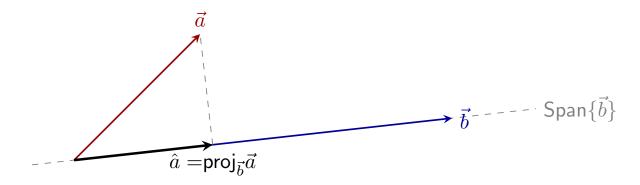
For any $A \in \mathbb{R}^{m \times n}$, the orthogonal complement of $\operatorname{Row} A$ is $\operatorname{Null} A$, and the orthogonal complement of $\operatorname{Col} A$ is $\operatorname{Null} A^T$.

The idea behind this theorem is described in the diagram below.



Looking Ahead - Projections

Suppose we want to find the closed vector in $\mathrm{Span}\{\vec{b}\}$ to \vec{a} .



- Later in this Chapter, we will make connections between dot products and **projections**.
- Projections are also used throughout multivariable calculus courses.

Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

Topics

- 1. Orthogonal Sets of Vectors
- 2. Orthogonal Bases and Projections.

Learning Objectives

- 1. Apply the concepts of orthogonality to
 - a) compute orthogonal projections and distances,
 - b) express a vector as a linear combination of orthogonal vectors,
 - c) characterize bases for subspaces of \mathbb{R}^n , and
 - d) construct orthonormal bases.

Motivating Question

What are the special properties of this basis for \mathbb{R}^3 ?

$$\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} / \sqrt{11}, \quad \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} / \sqrt{6}, \quad \begin{bmatrix} -1 \\ -4 \\ 7 \end{bmatrix} / \sqrt{66}$$

Orthogonal Vector Sets

Definition

A set of vectors $\{\vec{u}_1,\ldots,\vec{u}_p\}$ are an **orthogonal set** of vectors if for each $j \neq k$, $\vec{u}_j \perp \vec{u}_k$.

Example: Fill in the missing entries to make $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ an orthogonal set of vectors.

$$\vec{u}_1 = \begin{bmatrix} 4\\0\\1 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} -2\\0\\\alpha = 8 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 0\\b\\c = 0 \end{bmatrix}$$

$$0 = \vec{u}_1 \cdot \vec{u}_2 = 4 - (-2) + 0 \cdot 0 + 1 - 0 \qquad \alpha = 8$$

$$0 = \vec{u}_2 \cdot \vec{u}_3 = (-2) \cdot 0 + 0 \cdot b + 8 \cdot c \qquad c = c$$

$$0 = \vec{u}_1 \cdot \vec{u}_3 \iff \text{for any charge of } b$$

Section 6.2 Slide 23

$$\begin{cases}
\vec{u}_{1}, \dots, \vec{v}_{p} | & \text{on orthogonal set.} \\
\vec{v}_{1}, \dots, \vec{v}_{p} | & \text{on orthogonal set.} \\
\vec{v}_{2}, \dots, \vec{v}_{p} | & = (C_{1}\vec{u}_{1} + \dots + C_{p}\vec{v}_{p}) \cdot (C_{1}\vec{u}_{1} + \dots + C_{p}\vec{v}_{p}) \\
= p^{2} + \text{forms} \\
= C_{1}\vec{u}_{1} \cdot C_{1}\vec{u}_{1}^{2} + C_{2}\vec{u}_{2} \cdot C_{2}\vec{u}_{2} + \dots + C_{p}\vec{v}_{p} \cdot C_{p}\vec{v}_{p} \\
= C_{1}^{2} \cdot ||\vec{u}_{1}||^{2} + C_{2}^{2} ||\vec{u}_{2}||^{2} + \dots + C_{p}^{2}||\vec{u}_{p}||^{2}$$

Recall $|| \vec{u}_1, \cdots, \vec{u}_p ||$ $|| \vec{u}_1, \cdots, \vec{u}_p || \Rightarrow C_1 \vec{u}_1 + \cdots + C_p \vec{u}_p = \vec{0}$ Timplifies $C_1 = \cdots = C_p = 0$ Suppose $|| \vec{u}_1, \cdots, \vec{u}_p ||$ $|| \vec{u}_1 + \cdots + \vec{u}_p ||^2 = \vec{C}_1 || \vec{u}_1 ||^2 + \cdots + \vec{C}_p || \vec{u}_p ||^2 = 0$ Assume $C_1 \vec{u}_1 + \cdots + C_p \vec{u}_p = \vec{0}$ $|| C_1 \vec{u}_1 + \cdots + C_p \vec{u}_p ||^2 = \vec{C}_1 || \vec{u}_1 ||^2 + \cdots + \vec{C}_p || \vec{u}_p ||^2 = 0$ $|| C_1 \vec{u}_1 + \cdots + C_p \vec{u}_p ||^2 = \vec{C}_1 || \vec{u}_1 ||^2 + \cdots + \vec{C}_p || \vec{u}_p ||^2 = 0$

Linear Independence

Theorem (Linear Independence for Orthogonal Sets)

Let $\{\vec{u}_1,\ldots,\vec{u}_p\}$ be an orthogonal set of vectors. Then, for scalars c_1,\ldots,c_p ,

$$||c_1\vec{u}_1 + \dots + c_p\vec{u}_p||^2 = c_1^2||\vec{u}_1||^2 + \dots + c_p^2||\vec{u}_p||^2.$$

In particular, if all the vectors \vec{u}_r are non-zero, the set of vectors $\{\vec{u}_1,\ldots,\vec{u}_p\}$ are linearly independent.

Recall
$$W$$
 a subspace $B = \{ \overline{u}_1, \dots, \overline{u}_p \}$

It is an bacis for W
 $W = Span B$

Orthogonal Bases

Orthogonal Bases

 $W = Span B$
 W

Theorem (Expansion in Orthogonal Basis)

Let $\{\vec{u}_1,\ldots,\vec{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Then, for any vector $\vec{w}\in W$,

$$\vec{w} = c_1 \vec{u}_1 + \dots + c_p \vec{u}_p.$$

Above, the scalars are $c_q = rac{ec{w} \cdot ec{u}_q}{ec{u}_q \cdot ec{u}_q}$.

For example, any vector $\vec{w} \in \mathbb{R}^3$ can be written as a linear combination of $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$, or some other orthogonal basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

Section 6.2 Slide 25
$$\overrightarrow{u}_1$$

$$\overrightarrow{e}_1$$

$$\overrightarrow{e}_2$$

$$\overrightarrow{v}_1$$

$$\vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{s} = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$

Let W be the subspace of \mathbb{R}^3 that is orthogonal to \vec{x} .

- a) Check that an orthogonal basis for W is given by \vec{u} and \vec{v} .
- b) Compute the expansion of \vec{s} in basis W.

$$W = (Spant \vec{x})^{T} = Null(xT)$$
a) (i) $\vec{u}, \vec{v} \in W$ (: $\vec{u} \cdot \vec{x} = 0$, $\vec{v} \cdot \vec{x} = 0$)
(ii) $d\vec{u}, \vec{v} \in V$ (in. indep. $(dim W = 2)$

$$\vec{u} \cdot \vec{v} = 0$$

Section 6.2 Slide 26

b)
$$\overrightarrow{S} = \overrightarrow{C}_1 \overrightarrow{U} + \overrightarrow{C}_2 \overrightarrow{U}$$
 (Reck

$$\overrightarrow{S} \in W \text{ first}$$
)

$$\overrightarrow{C}_1 = \frac{\overrightarrow{S} \cdot \overrightarrow{U}}{\overrightarrow{U} \cdot \overrightarrow{U}} = C_2 = \frac{\overrightarrow{S} \cdot \overrightarrow{V}}{\overrightarrow{V} \cdot \overrightarrow{V}} = C_3 = C_4 = C_4 = C_4 = C_5 = C$$

Projections

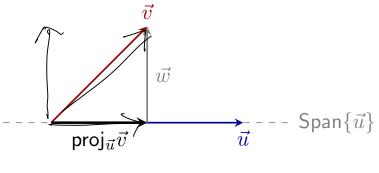
Let \vec{u} be a non-zero vector, and let \vec{v} be some other vector. The **orthogonal projection of** \vec{v} **onto the direction of** \vec{u} is the vector in the span of \vec{u} that is closest to \vec{v} .

$$\mathsf{proj}_{ec{u}} ec{v} = rac{ec{v} \cdot ec{u}}{ec{u} \cdot ec{u}} ec{u}.$$

The vector $\vec{w} = \vec{v} - \mathrm{proj}_{\vec{u}} \vec{v}$ is orthogonal to \vec{u} , so that

$$\vec{v} = \operatorname{proj}_{\vec{u}} \vec{v} + \vec{w}$$

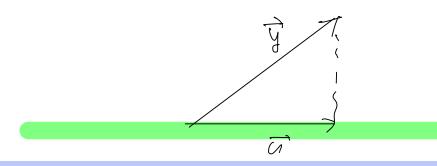
$$\|\vec{v}\|^2 = \|\operatorname{proj}_{\vec{u}} \vec{v}\|^2 + \|\vec{w}\|^2$$
 by Phythegorea .



Section 6.2 Slide 27 (2) =
$$(\vec{v}) = (\vec{v}) = (\vec{v}) + (\vec{v}) = (\vec{v}) + (\vec{v}) + (\vec{v}) + (\vec{v}) = (\vec{v}) + ($$

$$\overrightarrow{V} \cdot \overrightarrow{U} = C \cdot \overrightarrow{U} \cdot \overrightarrow{U} + O$$

$$C = \frac{\overrightarrow{V} \cdot \overrightarrow{U}}{\overrightarrow{U} \cdot \overrightarrow{U}}$$



Let L be spanned by $\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Calculate the projection of $\vec{y} = (-3, 5, 6, -4)$ onto line L.
- 2. How close is \vec{y} to the line L?

$$= \left(\frac{-3+5+6-4}{1^2+1^2+1^2}\right) \vec{U} = \vec{U}$$

2) distance
$$(\vec{y}, \vec{L}) = \min_{\vec{x} \in \vec{L}} (\vec{y}, \vec{x})$$

Section 6.2 Slide 28

$$= ||\vec{y} - pvi_{1}(\vec{y})||$$

$$= ||\vec{y} - pvi_{2}(\vec{y})||$$

$$= ||\vec{y} - \vec{u}|| = ||\vec{4}|| = |(-4)^{2} + 4^{2} + 5^{2} + (-5)^{2}$$

$$\overrightarrow{x} \in \text{Null}(A) \quad \Leftrightarrow \quad \overrightarrow{A}\overrightarrow{x} = 0$$

$$\overrightarrow{U}_{1} \quad \overrightarrow{X} = \begin{bmatrix} \overrightarrow{U}_{1} \cdot \overrightarrow{X} \\ \vdots \\ \overrightarrow{U}_{m} \cdot \overrightarrow{X} \end{bmatrix}$$

$$\Leftrightarrow \quad \overrightarrow{X} \quad \text{is orthogonal to pand } \overrightarrow{U}_{1} \cdot \overrightarrow{--}, \quad \overrightarrow{U}_{m} \cdot \overrightarrow{Y}$$

$$\text{Yow}(A)$$

$$\text{Yow}(A)$$

$$\begin{cases} \operatorname{row}(A)^{\perp} = \operatorname{Null}(A) \\ \operatorname{Col}(A)^{\perp} = \operatorname{Null}(A^{\top}) \end{cases}$$

Stir, ---:
$$\overrightarrow{Up}$$
 of the parallel basis for \overrightarrow{W}

$$\overrightarrow{W} = C_1 \overrightarrow{U_1} + --+ C_1 \overrightarrow{U_2}$$

$$= \left(\frac{\overrightarrow{W} \cdot \overrightarrow{U_1}}{\overrightarrow{U_1} \cdot \overrightarrow{U_1}} \right) \overrightarrow{U_1} + --+ \left(\frac{\overrightarrow{W} \cdot \overrightarrow{U_2}}{\overrightarrow{U_1} \cdot \overrightarrow{U_2}} \right) \cdot \overrightarrow{V_2}$$

Definition

Definition (Orthonormal Basis)

An **orthonormal basis** for a subspace W is an orthogonal basis $\{\vec{u}_1,\ldots,\vec{u}_p\}$ in which every vector \vec{u}_q has unit length. In this case, for each $\vec{w}\in W$,

$$\vec{w} = (\vec{w} \cdot \vec{u}_1)\vec{u}_1 + \dots + (\vec{w} \cdot \vec{u}_p)\vec{u}_p$$

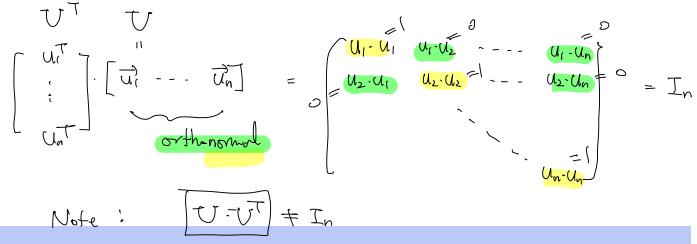
$$\|\vec{w}\| = \sqrt{(\vec{w} \cdot \vec{u}_1)^2 + \dots + (\vec{w} \cdot \vec{u}_p)^2}$$

The subspace W is a subspace of \mathbb{R}^3 perpendicular to x=(1,1,1). Calculate the missing coefficients in the orthonormal basis for W.

$$u = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \qquad v = \frac{1}{\sqrt{6}} \begin{bmatrix} 0\\0\\-1 \end{bmatrix} - 2$$

$$\overrightarrow{x} \cdot \overrightarrow{u} = 0 \qquad \overrightarrow{x} \cdot \overrightarrow{v} = 0 \qquad \overrightarrow{a} + b + c = 0$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = 0 \qquad \overrightarrow{a} = c$$



Orthogonal Matrices

An **orthogonal matrix** is a square matrix whose columns are orthonormal.

Theorem

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I_n$.

Can U have orthonormal columns if n > m?

$\mathsf{Theorem}$

Theorem (Mapping Properties of Orthogonal Matrices)

Assume $m \times m$ matrix U has orthonormal columns. Then

1. (Preserves length)
$$||\overrightarrow{U}\overrightarrow{x}|| = ||\overrightarrow{x}||$$
 $||\overrightarrow{x}|| = ||\overrightarrow{x}||$ $||\overrightarrow{x}|| = ||\overrightarrow{x}||$ 2. (Preserves angles) $(U\overrightarrow{x}) \cdot (U\overrightarrow{y}) = ||\overrightarrow{x} \cdot \overrightarrow{y}||$

- 3. (Preserves orthogonality)

$$||\overrightarrow{U}\overrightarrow{x}||^2 = ||x_1\overrightarrow{u}| + |x_2\overrightarrow{u}| + \cdots + |x_n\overrightarrow{u}_n||^2 = |x_1^*||u_n||^2 + \cdots + |x_n^*\overrightarrow{u}_n||^2 = |x_1^*||u_n||^2$$

$$= |x_1^* + \cdots + |x_n^*||u_n||^2 = |x_1^* + \cdots + |x_n^*\overrightarrow{u}_n||^2 =$$

Compute the length of the vector below.
$$U_{2} = \begin{bmatrix} 1/2 & 2/\sqrt{14} \\ 1/2 & 1/\sqrt{14} \\ 1/2 & -3/\sqrt{14} \end{bmatrix} = \begin{bmatrix} 1/2 & 2/\sqrt{14} \\ 1/2 & 1/\sqrt{14} \\ 1/2 & -3/\sqrt{14} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{1} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{2} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{2} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{3} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

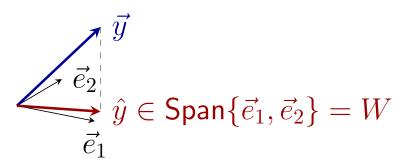
$$U_{4} = \begin{bmatrix} \sqrt{2} \\ 1/2 & 0 \end{bmatrix}$$

Section 6.2 Slide 33

Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra



Vectors \vec{e}_1 and \vec{e}_2 form an orthonormal basis for subspace W. Vector \vec{y} is not in W.

The orthogonal projection of \vec{y} onto $W = \text{Span}\{\vec{e_1}, \vec{e_2}\}$ is \hat{y} .

Topics and Objectives

Topics

- 1. Orthogonal projections and their basic properties
- 2. Best approximations

Learning Objectives

- 1. Apply concepts of orthogonality and projections to
 - a) compute orthogonal projections and distances,
 - b) express a vector as a linear combination of orthogonal vectors,
 - c) construct vector approximations using projections,
 - d) characterize bases for subspaces of \mathbb{R}^n , and
 - e) construct orthonormal bases.

Motivating Question For the matrix A and vector \vec{b} , which vector \hat{b} in column space of A, is closest to \vec{b} ?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -4 & -2 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

ONB for W

Let $\vec{u}_1, \ldots, \vec{u}_5$ be an orthonormal basis for \mathbb{R}^5 . Let $W = \operatorname{Span}\{\vec{u}_1, \vec{u}_2\}$. For a vector $\vec{y} \in \mathbb{R}^5$, write $\vec{y} = \hat{y} + w^{\perp}$, where $\hat{y} \in W$ and $w^{\perp} \in W^{\perp}$.

$$\vec{y} = C_{1} \vec{u}_{1} + C_{2} \vec{u}_{2} + \cdots + C_{5} \vec{u}_{5}$$

$$= (\vec{y} \cdot \vec{u}_{1}) \vec{u}_{1} + (\vec{y} \cdot \vec{u}_{2}) \cdot \vec{u}_{2} + \cdots + (\vec{y} \cdot \vec{u}_{7}) \vec{u}_{1}$$

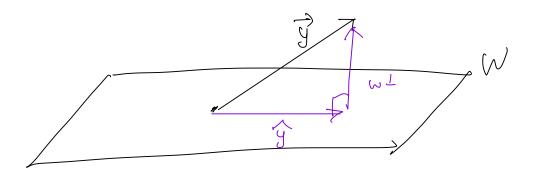
$$\in W$$

$$(u_{3} \in W^{\perp}) \Rightarrow (u_{3} \cdot \vec{u}_{1} = \vec{u}_{3} \cdot \vec{u}_{2} = 0)$$

$$\vec{u}_{3} \cdot \vec{u}_{1} = \vec{u}_{3} \cdot \vec{u}_{2} = 0$$

$$\vec{u}_{4} \in W^{\perp}, \quad u_{5} \in W^{\perp}$$

Section 6.3 Slide 36



Orthogonal Decomposition Theorem

Theorem

g = privity

Let W be a subspace of \mathbb{R}^n . Then, each vector $\vec{y} \in \mathbb{R}^n$ has the **unique** decomposition

$$\vec{y} = \hat{y} + w^{\perp}, \quad \hat{y} \in W, \quad w^{\perp} \in W^{\perp}.$$

And, if $\vec{u}_1,\ldots,\vec{u}_p$ is any orthogonal basis for W,

$$\mathbf{\hat{y}} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \dots + \frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p} \vec{u}_p.$$

We say that \widehat{y} is the orthogonal projection of \overrightarrow{y} onto W.

If time permits, we will explain some of this theorem on the next slide.

Explanation (if time permits)

We can write

$$\widehat{y} =$$

Then, $w^\perp = \vec{y} - \widehat{y}$ is in W^\perp because

Example 2a

$$ec{y}=egin{pmatrix} 4 \ 0 \ 3 \end{pmatrix}, \quad ec{u}_1=egin{pmatrix} 2 \ 2 \ 0 \end{pmatrix}, \quad ec{u}_2=egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

Construct the decomposition $\vec{y} = (\widehat{y} + w^{\perp})$ where \widehat{y} is the orthogonal projection of \vec{y} onto the subspace $W = \operatorname{Span}\{\vec{u}_1, \vec{u}_2\}$.

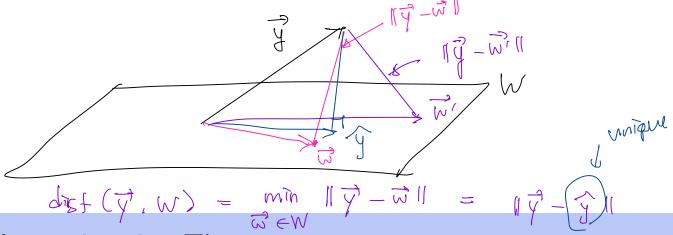
$$\hat{Y} = C_1 \vec{u}_1 + C_2 \vec{u}_2$$

$$= (\vec{y} \cdot \vec{u}_1) \cdot u_1 + (\vec{y} \cdot \vec{u}_2) \cdot u_2$$

$$= \frac{8}{2^2 + 2^2} \cdot u_1 + \frac{3}{1^2} u_2 = u_1 + 3 u_2$$

Section 6.3 Slide 39

$$\omega^{\perp} = \overrightarrow{y} - \widehat{y} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} \in \overrightarrow{W}$$



Best Approximation Theorem

Theorem

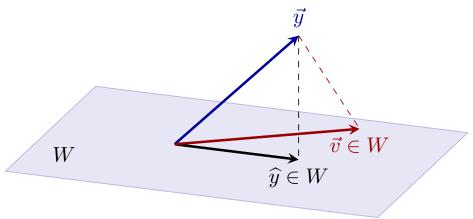
Let W be a subspace of \mathbb{R}^n , $\vec{y} \in \mathbb{R}^n$, and \hat{y} is the orthogonal projection of \vec{y} onto W. Then for any $\vec{w} \neq \hat{y} \in W$, we have

$$\|\vec{y} - \hat{y}\| < \|\vec{y} - \vec{w}\|$$

That is, \widehat{y} is the unique vector in W that is closest to \overrightarrow{y} .

Proof (if time permits)

The orthogonal projection of \vec{y} onto W is the closest point in W to \vec{y} .



Example 2b

$$\vec{y} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}, \quad \vec{u}_1 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

What is the distance between \vec{y} and subspace $W = \operatorname{Span}\{\vec{u}_1, \vec{u}_2\}$? Note that these vectors are the same vectors that we used in Example 2a.

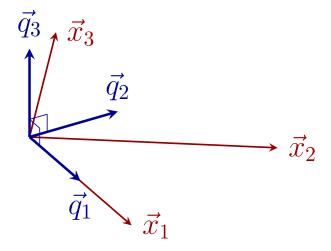
$$\frac{1}{3} = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{4}{3} - 2c_1 \\ 0 - 2c_1 \\ 3 - c_2 \end{bmatrix} = \begin{bmatrix} 4 - 2c_1 \\ 2 - 2c_1 \end{bmatrix} = \begin{bmatrix} 4 - 2c_1 \\ 3 - c_2 \end{bmatrix}$$
Section 6.3 Slide 42
$$\frac{4}{3} + (2c_1^2 - 4c_1 + 4) = 3c_1 = 3c_2 = 3c$$

Section 6.4: The Gram-Schmidt Process

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra



Vectors $\vec{x}_1, \vec{x}_2, \vec{x}_3$ are given linearly independent vectors. We wish to construct an orthonormal basis $\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}$ for the space that they span.

Section 6.4 Slide 43

Topics and Objectives

Topics

- 1. Gram Schmidt Process
- 2. The QR decomposition of matrices and its properties

Learning Objectives

- 1. Apply the iterative Gram Schmidt Process, and the QR decomposition, to construct an orthogonal basis.
- 2. Compute the QR factorization of a matrix.

Motivating Question The vectors below span a subspace W of \mathbb{R}^4 . Identify an orthogonal basis for W.

$$\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

$$\chi_{2} - \operatorname{proj}_{W_{1}}(\chi_{2}) = \omega$$

$$\chi_{1} = \chi + \omega$$

$$\chi_{2} = \chi + \omega$$

$$\chi_{1} = \chi + \omega$$

$$\chi_{2} = \chi + \omega$$

$$\chi_{3} = \chi + \omega$$

$$\chi_{4} = \chi + \omega$$

$$\chi_{5} = \chi + \omega$$

$$\chi_{1} = \chi + \omega$$

Example

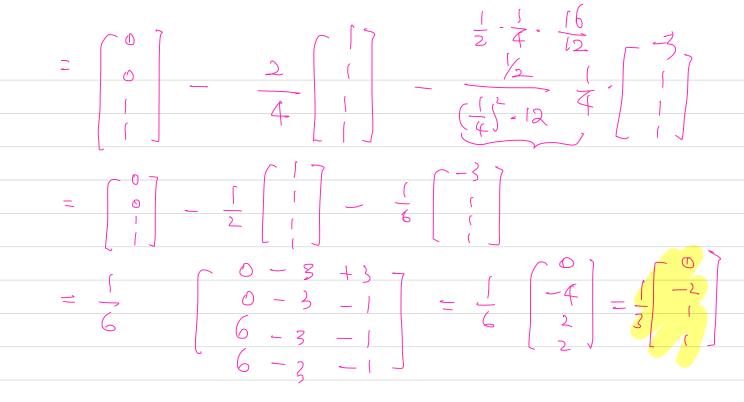
The vectors below span a subspace W of \mathbb{R}^4 . Construct an orthogonal

basis for W.

basis for
$$W$$
.
$$\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}. \quad \text{orthogond}$$

$$\vec{y}_2 = \vec{x}_2 - \vec{y}_1 \cdot \vec{y}_1 = \vec{y}_1 \cdot \vec{y}_1 = \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 = \vec{y}_1 \cdot \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 = \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 = \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 = \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 = \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 = \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_2 = \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_1 \cdot \vec{y}_2 \cdot \vec{y}_1 \cdot \vec{y}_1$$

$$\overline{V_3} = \overline{X_2} - prij_{W_2}(\overline{X_3}) = \overline{X_3} - (\overline{X_1}\overline{V_1} + \overline{X_2}\overline{V_2}\overline{V_2})$$



The Gram-Schmidt Process

Slide 46

Section 6.4

Given a basis $\{\vec{x}_1,\ldots,\vec{x}_p\}$ for a subspace W of \mathbb{R}^n , iteratively define

$$\vec{v}_1 = \vec{x}_1$$

$$\vec{v}_2 = \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1$$

$$\vec{v}_3 = \vec{x}_3 - \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2$$

$$\vdots$$

$$\vec{v}_p = \vec{x}_p - \frac{\vec{x}_p \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \dots - \frac{\vec{x}_p \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}$$

Then, $\{\vec{v}_1,\ldots,\vec{v}_p\}$ is an orthogonal basis for W.

Span
$$d \times 1, \times 1 = Span d \times 1, \times 1$$

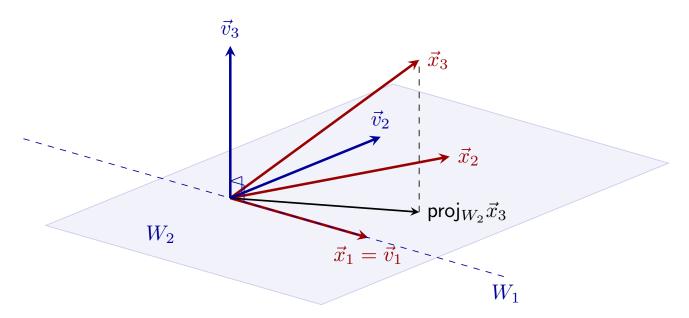
Span $d \times 1, \times 2, \times 3 = Span d \times 1, \times 2, \times 3$

Proof

Section 6.4 Slide 47

Geometric Interpretation

Suppose $\vec{x}_1, \vec{x}_2, \vec{x}_3$ are linearly independent vectors in \mathbb{R}^3 . We wish to construct an orthogonal basis for the space that they span.



We construct vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$, which form our **orthogonal** basis. $W_1 = \mathrm{Span}\{\vec{v}_1\}$, $W_2 = \mathrm{Span}\{\vec{v}_1, \vec{v}_2\}$.

Section 6.4 Slide 48

orthogonal Bases
$$u_i = \frac{\nabla r}{\|\nabla r\|}, \quad ----, \quad u_p = \frac{\nabla p}{\|\nabla p\|}.$$

Orthonormal Bases

$$U_1 = \frac{y_1}{\|y_1\|}$$
, ---, $u_p = \frac{y_p}{\|y_p\|}$

A set of vectors form an **orthonormal basis** if the vectors are mutually **orthogonal** and have unit length.

Example

The two vectors below form an orthogonal basis for a subspace W. Obtain an orthonormal basis for W.

$$\vec{v}_1 = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}.$$

$$\vec{u}_4 = \vec{\overrightarrow{V}_4} = \vec{\overrightarrow{V}_4} \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}, \quad \vec{u}_2 = \vec{\overrightarrow{V}_2} = \vec{\overrightarrow{V}_2} = \vec{\overrightarrow{V}_4} \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}.$$

$$\mathcal{V}_{1} = \chi_{1}$$

$$\mathcal{V}_{2} = \chi_{2} - () \cdot \chi_{1} - () \chi_{2}$$

$$\chi_{3} = () \cdot \chi_{1} + () \chi_{2} + \chi_{3}$$

$$\chi_{1} = \chi_{1}$$

$$\chi_{2} = () \cdot \chi_{1} + () \chi_{2} + \chi_{3}$$

$$\chi_{3} = () \cdot \chi_{1} + () \chi_{2} + \chi_{3}$$

QR Factorization

Theorem

Any $m \times n$ matrix A with linearly independent columns has the ${\bf QR}$ factorization

$$A = QR$$

where

- 1. Q is $m \times n$, its columns are an orthonormal basis for $\operatorname{Col} A$.
- 2. R is $n \times n$, upper triangular, with positive entries on its diagonal, and the length of the j^{th} column of R is equal to the length of the j^{th} column of A.

In the interest of time:

- ullet we will not consider the case where A has linearly dependent columns
- ullet students are not expected to know the conditions for which A has a QR factorization

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_1 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1
\end{cases}$$

$$\begin{cases}
\vec{x}_1, \dots, \vec{x}_p \\
\vec{x}_2 = \vec{x}_1 \cdot \vec{u}_1
\end{cases}$$

$$\vec{x}_1, \dots, \vec{x}_p \cdot \vec{u}_1$$

$$\vec{x}_2, \dots, \vec{x}_p \cdot \vec{u}_1$$

$$\vec{x}_3, \dots, \vec{x}_p \cdot \vec{u}_1$$

$$\vec{x}_4, \dots, \vec{x}_4
\end{cases}$$

$$\vec{x}_4, \dots, \vec{x}_4$$

Proof

$$A = \begin{bmatrix} \overrightarrow{x}_1 & \cdots & \overrightarrow{x}_t \end{bmatrix}, \quad Q = \begin{bmatrix} \overrightarrow{u}_1 & \cdots & \overrightarrow{u}_p \end{bmatrix}$$

$$\overrightarrow{x}_1 = Q \cdot \begin{bmatrix} \overrightarrow{x}_1 \cdot \overrightarrow{u}_1 \\ \vdots \\ \overrightarrow{x}_2 \cdot \overrightarrow{u}_1 \end{bmatrix}$$

$$\overrightarrow{x}_2 = Q \cdot \begin{bmatrix} \overrightarrow{x}_2 \cdot \overrightarrow{u}_1 \\ \overrightarrow{x}_2 \cdot \overrightarrow{u}_2 \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} \overrightarrow{x}_1 & \overrightarrow{x}_2 - \cdots & \overrightarrow{x}_t \end{bmatrix} = Q \begin{bmatrix} \overrightarrow{x}_1 \cdot \overrightarrow{u}_1 & \overrightarrow{x}_2 \cdot \overrightarrow{u}_1 \\ \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & \vdots \\ x_p \cdot \overrightarrow{u}_t \end{bmatrix}$$

Example

Construct the QR decomposition for $A=\begin{bmatrix} 3 & -2 \\ 2 & 3 \\ 0 & 1 \end{bmatrix}$.

$$\rightarrow$$

$$\vec{x}$$
] = [\vec{u}

$$\begin{bmatrix} 3 & -2 \\ 2 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{\sqrt{13}} & \frac{1}{\sqrt{14}} \\ \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{14}} \\ 0 & \frac{1}{\sqrt{14}} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{14} \end{bmatrix}$$

$$\|x(1) = \sqrt{\frac{x_1 \cdot x_1}{x_2}}$$

Section 6.4 Slide 52
$$= \sqrt{3^2 + 2 + 8}$$

$$\begin{cases} x_{1}, \cdots, x_{p} \\ \end{bmatrix} \quad \text{Tim. Timber.}$$

$$\begin{cases} x_{1}, \cdots, x_{p} \\ \end{bmatrix} \quad \text{Orthogonal.} \quad \text{and} \quad \begin{cases} w_{1} = \text{Spann} dx_{1} \\ \text{Spann} dx_{1}$$

Midterm 3. Your initials:

You do not need to justify your reasoning for questions on this page.

- (c) (2 points) The standard matrix of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ has orthonormal columns. Which one of the following statements is **false**? *Choose only one.*
 - $\bigcirc \|T(\vec{x})\| = \|\vec{x}\| \text{ for all } \vec{x} \text{ in } \mathbb{R}^3.$
 - \bigcirc If two non-zero vectors \vec{x} and \vec{y} in \mathbb{R}^3 are scalar multiples of each other, then $||T(\vec{x}+\vec{y})||^2 = ||T(\vec{x})||^2 + ||T(\vec{y})||^2$.
 - \bigcirc If \mathcal{P} is a parallelpiped in \mathbb{R}^3 , then the volume of $T(\mathcal{P})$ is equal to the volume of \mathcal{P} .
 - \bigcirc *T* is one-to-one.

$$M \times N$$
 $M \times N$ $M = 4$

$$A = Q R$$

$$N = 8$$

2. (2 points) Suppose that, in the QR factorization of A, we have Q as given below. Find R.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad Q = \frac{1}{2} \begin{bmatrix} 1 & 1/\sqrt{3} \\ 1 & 1/\sqrt{3} \\ 1 & -\sqrt{3} \\ 1 & 1/\sqrt{3} \end{bmatrix} \qquad R = \begin{bmatrix} \chi_1 \cdot \chi_1 & \chi_2 \cdot \chi_1 \\ \chi_2 \cdot \chi_2 & \chi_3 \cdot \chi_4 \end{bmatrix}$$

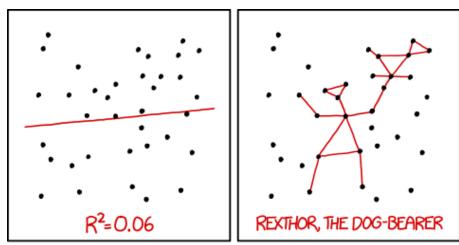
Note: Please fill in the blanks and do not place values in front of the matrix for this problem.

$$\chi_{4} - u_{4} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 2 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \cdot \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4 & = 1 \\ \frac{1}{3} \cdot \frac{1}{3} & = \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 4$$

Section 6.5 : Least-Squares Problems

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra



I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

https://xkcd.com/1725

Section 6.5 Slide 53

Topics and Objectives

Topics

- 1. Least Squares Problems
- 2. Different methods to solve Least Squares Problems

Learning Objectives

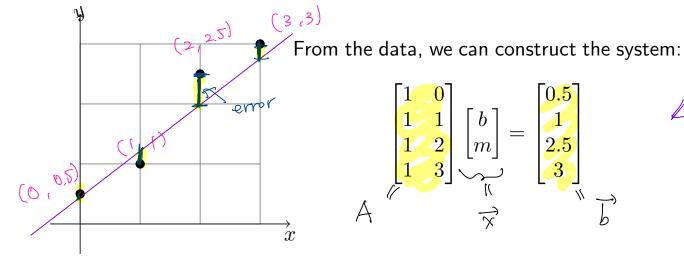
1. Compute general solutions, and least squares errors, to least squares problems using the normal equations and the QR decomposition.

Motivating Question A series of measurements are corrupted by random errors. How can the dominant trend be extracted from the measurements with random error?

Inconsistent Systems

$$y = mx + b$$

Suppose we want to construct a line of the form
$$y = mx + b \qquad \Rightarrow \qquad \begin{cases} 0.5 = m \cdot 0 + b \\ 4 = m \cdot 1 + b \end{cases}$$
 that best fits the data below.
$$(5, ?) \qquad \qquad \begin{cases} 2.5 = m \cdot 2 + b \\ 3 = m \cdot 3 + b \end{cases}$$



$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1 \\ 2.5 \\ 3 \end{bmatrix}$$

$$\overrightarrow{\nearrow}$$

Can we 'solve' this inconsistent system?

Section 6.5 Slide 55

The Least Squares Solution to a Linear System

Definition: Least Squares Solution

Let A be a $m \times n$ matrix. A **least squares solution to** $A\vec{x} = \vec{b}$ is the solution \hat{x} for which

$$\|\vec{b} - A\hat{x}\| \le \|\vec{b} - A\vec{x}\|$$

for all $\vec{x} \in \mathbb{R}^n$.

Section 6.5 Slide 56

$$A\overrightarrow{x} = \overrightarrow{b} \quad \overrightarrow{i} \quad Consistent$$

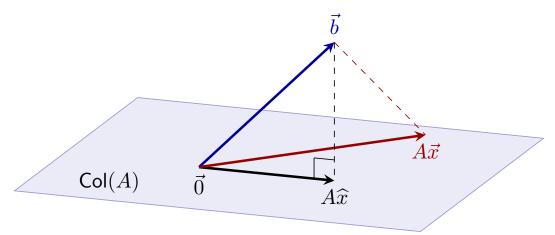
$$A\overrightarrow{x} = Col(A)$$

$$\overrightarrow{x} \in \mathbb{R}^n \quad \overrightarrow{b} - A\overrightarrow{x} = 0$$

$$\overrightarrow{x} = \overrightarrow{k} \quad \overrightarrow{k} = 0$$

$$\overrightarrow{k} =$$

A Geometric Interpretation



The vector \vec{b} is closer to $A\hat{x}$ than to $A\vec{x}$ for all other $\vec{x} \in \text{Col} A$.

- 1. If $\vec{b} \in \operatorname{Col} A$, then \widehat{x} is ...
- 2. Seek \widehat{x} so that $A\widehat{x}$ is as close to \overrightarrow{b} as possible. That is, \widehat{x} should solve $A\widehat{x}=\widehat{b}$ where \widehat{b} is . . .

Section 6.5 Slide 57

The Normal Equations

Theorem (Normal Equations for Least Squares)

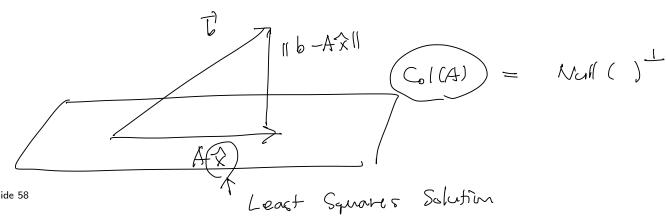
The least squares solutions to $A \vec{x} = \vec{b}$ coincide with the

$$\underbrace{A^T A \vec{x} = A^T \vec{b}}_{\text{Normal Equations}}$$

Reall

$$(R_{\text{aw}}(A))^{\perp} = N_{\text{wll}}(A)$$

 $Row(A) = Mull(A)^{\perp}$ U $Col(A) = Mull(AT)^{\perp}$



1 - Ax 1 col(A)

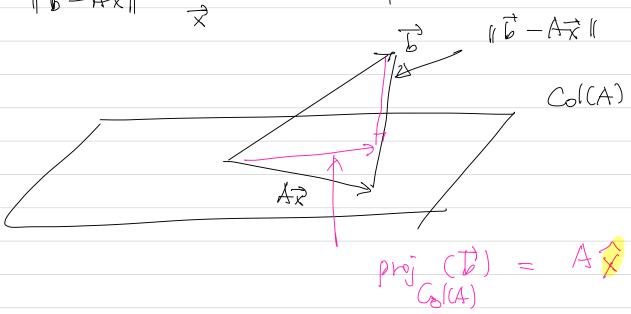
⇒ C -Ax € Null (AT)

$$\Rightarrow \qquad \vec{A} \cdot (b - A \hat{x}) = 0$$

 $\overrightarrow{A}^{\dagger} h - \overrightarrow{A}^{\dagger} \cdot \overrightarrow{A} \stackrel{\wedge}{x} = 0$

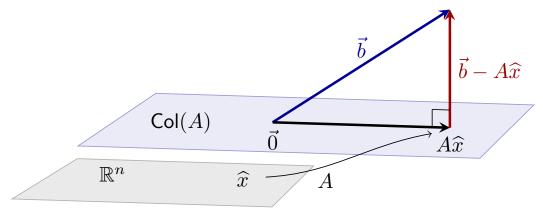
Normal Equation.

 $\| \mathbf{b} - A \mathbf{x} \| = \mathbf{win} \quad (\mathbf{b} - A \mathbf{x}) \|$



AT. A & = AT. b : Normal Equipments

Derivation



The least-squares solution \hat{x} is in \mathbb{R}^n .

- 1. \widehat{x} is the least squares solution, is equivalent to $\overrightarrow{b}-A\widehat{x}$ is orthogonal to A.
- 2. A vector \vec{v} is in $\operatorname{Null} A^T$ if and only if $|\vec{v} = \vec{0}$.
- 3. So we obtain the Normal Equations:

B is symmetric if
$$B = B^T$$

 $(AT.A)^T = (A)^T.(AT)^T = A^T.A$

$$\begin{bmatrix} a & b \\ -c & a \end{bmatrix}$$

Example

Compute the least squares solution to $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

$$A^{T} \cdot A \approx = A^{T} \cdot b$$

Solution:

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

Section 6.5 Slide 60

$$= \frac{1}{84} \begin{bmatrix} 5.9 & -10 \\ -19 & +17.11 \end{bmatrix}$$

$$= \frac{1}{84} \begin{bmatrix} 84 \\ 168 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \cancel{x}$$

The normal equations $A^TA\vec{x}=A^T\vec{b}$ become:

Theorem

Theorem (Unique Solutions for Least Squares)

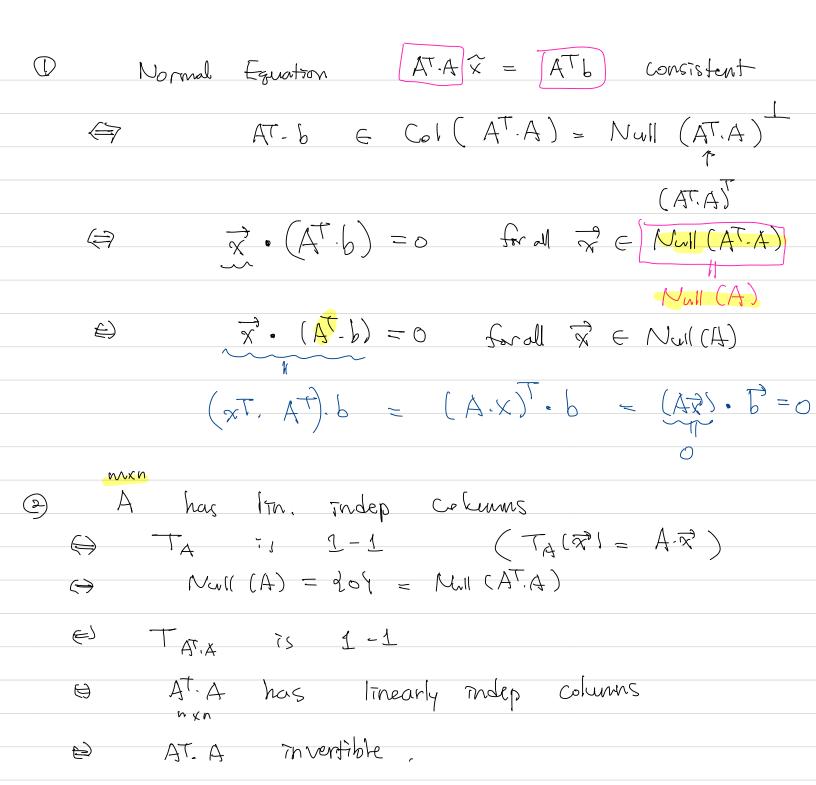
Let A be any $m \times n$ matrix. These statements are equivalent.

- 1. The equation $A\vec{x}=\vec{b}$ has a unique least-squares solution for each $\vec{b}\in\mathbb{R}^m.$
- 2. The columns of A are linearly independent.
- 3. The matrix $A^T A$ is invertible.

And, if these statements hold, the least square solution is

$$\hat{x} = (A^T A)^{-1} A^T \vec{b}.$$

Useful heuristic: A^TA plays the role of 'length-squared' of the matrix A. (See the sections on symmetric matrices and singular value decomposition.)



Example

Compute the least squares solution to $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix} \qquad \underbrace{A^{\mathsf{T}} A}_{} \stackrel{\frown}{\mathbf{x}} = \underbrace{A^{\mathsf{T}} b}_{}$$

Normal Egn
AT. A
$$\Re = A^{T.b}$$

Hint: the columns of A are orthogonal.

$$A^{T} \cdot A = \begin{bmatrix} 1 & 1 & 1 & 7 \\ -6 & -2 & 1 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 4^{7/9} & 0 & 7 \\ 0 & 90^{7/9} \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 3 & 1 \\ 0 & 90^{7/9} \end{bmatrix}$$

Section 6.5

$$\begin{bmatrix} \frac{4}{0} & 0 \\ 0 & \frac{7}{1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 8 - 1 \\ 4 + 1 \end{bmatrix}$$

$$x_1 = 2, \quad x_2 = \frac{1}{2}$$

$$\hat{\chi} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \qquad \qquad \chi_1 = \chi \quad , \quad \chi_2 = \frac{1}{2}$$

Theorem (Least Squares and QR)

Let $m \times n$ matrix A have a QR decomposition. Then for each $\vec{b} \in \mathbb{R}^m$ the equation $A\vec{x} = \vec{b}$ has the unique least squares solution

$$A^{T}A^{\uparrow}\lambda = A^{T}\lambda \qquad \Longrightarrow R\widehat{x} = Q^{T}\overrightarrow{b}.$$

(Remember, ${\cal R}$ is upper triangular, so the equation above is solved by back-substitution.)

$$A^{T}A \stackrel{\checkmark}{\chi} = A^{T} \cdot b$$
 $\Rightarrow \qquad R \stackrel{\checkmark}{\chi} = \begin{pmatrix} A^{T} \cdot b \end{pmatrix}$

Example 3. Compute the least squares solution to $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}$$

Solution. The QR decomposition of A is

$$A = QR = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

$$Q^{T}\vec{b} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}$$

And then we solve by backwards substitution $R\vec{x} = Q^T\vec{b}$

$$\begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}$$

$$2x_3 = 4 \Rightarrow x_3 = 2$$

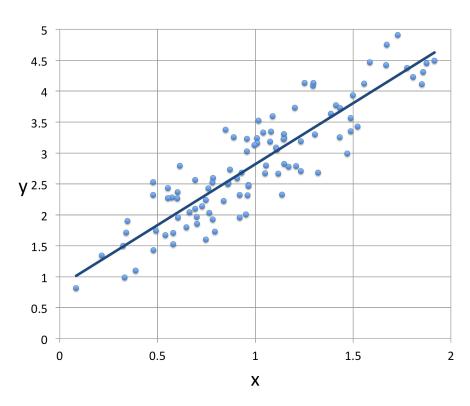
$$2x_2 + 3x_3 = -6 \Rightarrow x_2 = -6$$

$$2$$

$$2x_1 + 4x_2 + 5x_3 = 6 \Rightarrow x_1 = -6$$

$$281 + 482 + 583 = 6 \Rightarrow 81 = -6$$

Chapter 6 : Orthogonality and Least Squares 6.6 : Applications to Linear Models



Topics and Objectives

Topics

- 1. Least Squares Lines
- 2. Linear and more complicated models

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Apply least-squares and multiple regression to construct a linear model from a set of data points.
- 2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question

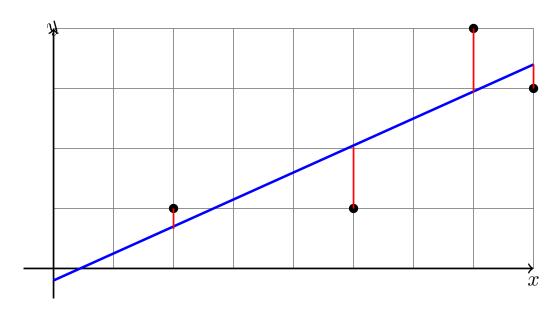
Compute the equation of the line $y=eta_0+eta_1x$ that best fits the data

The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

- 1. Black circles are data.
- 2. Blue line is the least squares line.
- 3. Lengths of red lines are the _____.

The least squares line minimizes the sum of squares of the _____



Section 6.6 Slide 70

(Trear. Model

DATA .

Example 1 Compute the least squares line $y = \beta_0 + \beta_1 x$ that best fits

the data

 $y = \beta_b x + \beta_1 x^3$

We want to solve

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 4 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix}
2 \\
5 \\
7 \\
8
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
4 \\
3
\end{bmatrix}$$

$$\begin{cases}
1 = \beta_0 + \beta_1 \cdot 2
\end{cases}$$

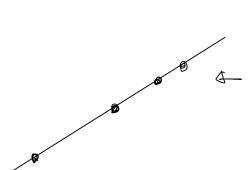
$$\begin{cases}
4 = \beta_0 + \beta_1 \cdot 5
\end{cases}$$

$$4 = \beta_0 + \beta_1 \cdot 5
\end{cases}$$

$$4 = \beta_0 + \beta_1 \cdot 5
\end{cases}$$

$$3 = \beta_0 + \beta_1 \cdot 8
\end{cases}$$

This is a least-squares problem : $X\beta = \vec{y}$.



least-squares solution

The normal equations are

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

$$X^{T}\vec{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 9 \\ 59 \end{bmatrix}$$

$$4 = \begin{bmatrix} 9 \\ 59 \end{bmatrix}$$

So the least-squares solution is given by

$$y = \beta_0 + \beta_1 x = \begin{pmatrix} -5 \\ 21 \end{pmatrix} + \begin{pmatrix} 19 \\ 42 \end{pmatrix} x$$

$$y = \beta_0 + \beta_1 x = \begin{pmatrix} -5 \\ 21 \end{pmatrix} + \begin{pmatrix} 19 \\ 42 \end{pmatrix} x$$

As we may have guessed, β_0 is negative, and β_1 is positive.

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \frac{1}{4 \cdot [42 - 22]} \begin{bmatrix} 142 - 22 \\ -22 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \end{bmatrix}$$

Section 6.6 Slide 72

Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

$$y = c_0 + c_1 f_1(x) + c_2 f_2(x) + \dots + c_k f_k(x).$$

If functions f_i are known, this is a linear problem in the c_i variables.

Example

Consider the data in the table below.

Determine the coefficients c_1 and c_2 for the curve $y = c_1x + c_2x^2$ that best fits the data.

$$\begin{cases} 2 = C_1(-1) + C_2(-1) \\ 0 = C_1 \cdot 0 + C_2 \cdot 0^2 \\ 0 = C_1 \cdot 0 + C_2 \cdot 0^2 \\ 0 = C_1 \cdot 0 + C_2 \cdot 0^2 \end{cases}$$

Slide 73 Section 6.6

WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha, Mathematica, and many other software.

WolframAlpha

linear fit
$$\{\{x_1, y_1\}, \{x_2, y_2\}, \dots, \{x_n, y_n\}\}$$

Mathematica

LeastSquares[
$$\{\{x_1, x_1, y_1\}, \{x_2, x_2, y_2\}, \dots, \{x_n, x_n, y_n\}\}$$
]

Almost any spreadsheet program does this as a function as well.

8. (8 points) Show work on this page with work under the problem, and your answer in the box.

In this problem, you will use the least-squares method to find the values α and β which best fit the curve

$$y = \alpha \cdot \frac{1}{1 + x^2} + \beta$$

to the data points (-1,1), (0,-1), (1,0) using the parameters α and β .

(i) What is the augmented matrix for the linear system of equations associated to this least squares problem?

$$\begin{cases}
1 = \alpha \cdot \frac{1}{1 + (-1)^2} + \beta \\
-1 = \alpha - \frac{1}{1 + 6^2} + \beta
\end{cases}$$

$$\begin{cases}
0 = \alpha \cdot \frac{1}{1 + 6^2} + \beta
\end{cases}$$

$$\begin{bmatrix} \frac{1}{2} & 1 & 1 \\ \frac{1}{2} & 1 & 0 \end{bmatrix}$$

(ii) What is the augmented matrix for the normal equations for this system.

(iii) Find a least-squares solution to the linear system from (i) to determine the parameters α and β of the best fitting curve.

$$\begin{array}{ccc}
-3 & 2 \\
\alpha = & \beta = & \end{array}$$

true	false	
\bigcirc	0	For any line $L \in \mathbb{R}^2$ passing through the origin, the matrix corresponding to the transformation that reflects across the line L must always be diagonalizable.
\circ	0	If A and B are $n \times n$ orthogonal matrices, then AB is also $n \times n$ and orthogonal.
0	0	If A is the reduced row echelon form (RREF) of B and A is diagonalizable, then B is diagonalizable.
\bigcirc	\circ	If $\vec{b}\in \mathrm{Col}(A)$, then the least squares solution to the linear system $A\vec{x}=\vec{b}$ is unique. $ \diamondsuit: \qquad \qquad \swarrow: \qquad \swarrow (A) = \swarrow (A) = A = A = A = A = A = A = A = A = A =$
	\bigcirc	For any rectangular $m \times n$ matrix A_n (Nul $A = \text{Row}(A^T A_n)$)
		For any rectangular $m \times n$ matrix A , (Nul A) = Row A^TA .) $V_{\text{uff}} \in A^TA$
\bigcirc	\bigcirc	If the distance of \vec{w} from \vec{v} is equal to the distance of \vec{w} from $-\vec{v}$, then $\vec{w} \cdot \vec{v} = 0$.
		ndicate whether the following situations are possible or impossible.
) (2 poi	ints) Ir	ducate whether the following situations are possible of impossible.
) (2 poi		ossible

Null (A) = Null (ATA)

Need

Ax = 0 are AT-Ax=0 equivaluent.

Need

If A^{T} , $A \cdot \overrightarrow{X} = 0$, then $A \overrightarrow{X} = 0$

 $(x^{T} \overrightarrow{A})(A \times) = x^{T} \cdot (A^{T} \overrightarrow{A} \overrightarrow{x}) = 0$ $(A \times \overrightarrow{A})(A \times) = x^{T} \cdot (A^{T} \overrightarrow{A} \overrightarrow{x}) = 0$

8. (4 points) Show all work for problems on this page. If $A = QR = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$, determine the least-squares solution to $A\hat{x} = \begin{pmatrix} \sqrt{2} \\ 2\sqrt{2} \end{pmatrix}$. You do not need to determine A.

$$\hat{x}$$
=