In-Class Final Exam Review Set A, Math 1554, Fall 2019 1. Indicate whether the statements are true or false. | true | false | | |-----------------------|-------|--| | | | | - O If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions. - \bigcirc A $n \times n$ matrix A and its echelon form E will always have the same eigenvalues. - \bigcirc $x^2 2xy + 4y^2 \ge 0$ for all real values of x and y. - \bigcirc If matrix A has linearly dependent columns, then $\dim((\operatorname{Row} A)^{\perp}) > 0$. - \bigcirc If λ is an eigenvalue of A, then dim $(\text{Null}(A \lambda I)) > 0$. - \bigcirc If A has QR decomposition A = QR, then ColA = ColQ. - \bigcirc If A has LU decomposition A = LU, then rank(A) = rank(U). - \bigcirc If A has LU decomposition A = LU, then dim(Null A) = dim(Null U)). - 2. Give an example of the following. - i) A 4×3 lower triangular matrix, A. such that $Col(A)^{\perp}$ is spanned by the vector $$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$$. $A = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$ ii) A 3×4 matrix A, that is in RREF, and satisfies dim $\left(\left(\operatorname{Row}A\right)^{\perp}\right)=2$ and dim $\left(\left(\operatorname{Col}A\right)^{\perp}\right)=1$ $$2. A = \left(\begin{array}{c} \\ \\ \end{array} \right)$$ 3. (3 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$. On the grid below, sketch a) Col(A), and b) the eigenspace corresponding to eigenvalue $\lambda = 5$. - 4. Fill in the blanks. - (a) If $A \in \mathbb{R}^{M \times N}$, M < N, and $A\vec{x} = 0$ does not have a non-trivial solution, how many pivot columns does A have? - (b) Consider the following linear transformation. $$T(x_1, x_2) = (2x_1 - x_2, 4x_1 - 2x_2, x_2 - 2x_1).$$ The domain of T is _____. The image of $\vec{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ under $T(\vec{x})$ is $\begin{pmatrix} & \\ & \end{pmatrix}$. The co-domain of T is _____. The range of T is: 5. Four points in \mathbb{R}^2 with coordinates (t,y) are (0,1), $(\frac{1}{4},\frac{1}{2})$, $(\frac{1}{2},-\frac{1}{2})$, and $(\frac{3}{4},-\frac{1}{2})$. Determine the values of c_1 and c_2 for the curve $y=c_1\cos(2\pi t)+c_2\sin(2\pi t)$ that best fits the points. Write the values you obtain for c_1 and c_2 in the boxes below. $$c_1 = \boxed{ }$$ $c_2 = \boxed{ }$ ## In-Class Final Exam Review Set B, Math 1554, Fall 2019 1. Indicate whether the statements are true or false. true false - O For any vector $\vec{y} \in \mathbb{R}^2$ and subspace W, the vector $\vec{v} = \vec{y} \text{proj}_W \vec{y}$ is orthogonal to W. - \bigcirc If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^m . - O If a matrix is invertible it is also diagonalizable. - \bigcirc If E is an echelon form of A, then Null A = Null E. - $\bigcirc \qquad \bigcirc \qquad \text{If the SVD of } n \times n \text{ singular matrix } A \text{ is } A = U \Sigma V^T \text{, then } \mathrm{Col} A = \mathrm{Col} U.$ - \bigcirc If the SVD of $n \times n$ matrix A is $A = U\Sigma V^T$, r = rankA, then the first r columns of V give a basis for NullA. - 2. Give an example of: - a) a vector $\vec{u} \in \mathbb{R}^3$ such that $\operatorname{proj}_{\vec{p}} \vec{u} = \vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$: $\vec{u} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$: - b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $A = \begin{pmatrix} & & \\ & & \end{pmatrix}$ - c) A 3×4 matrix, A, and $Col(A)^{\perp}$ is spanned by $\begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$. - d) A 2×2 matrix in RREF that is diagonalizable and not invertible. 3. Suppose $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$. On the grid below, sketch a) the range of $x \to Ax$, b) $(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A\vec{x} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$. - 4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Calculate - 1. $A(\vec{v}_1 + 4\vec{v}_2)$ - 2. A^{10} - $3. \lim_{k \to \infty} A^k(\vec{v}_1 + 4\vec{v}_2)$ ## In-Class Final Exam Review Set C, Math 1554, Fall 2019 1. Indicate whether the statements are possible or impossible. possible impossible - \bigcirc $Q(\vec{x}) = \vec{x}^T A \vec{x}$ is a positive definite quadratic form, and $Q(\vec{v}) = 0$, where \vec{v} is an eigenvector of A. - The maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where a > b > c, for $\vec{x} \in \mathbb{R}^3$, subject to $||\vec{x}|| = 1$, is not unique. - The location of the maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where a > b > c, for $\vec{x} \in \mathbb{R}^3$, subject to $||\vec{x}|| = 1$, is not unique. - \bigcirc A is 2 × 2, the algebraic multiplicity of eigenvalue $\lambda=0$ is 1, and $\dim(\mathrm{Col}(A)^{\perp})$ is equal to 0. - \bigcirc Stochastic matrix P has zero entries and is regular. - \bigcirc A is a square matrix that is not diagonalizable, but A^2 is diagonalizable. - \bigcirc The map $T_A(\vec{x}) = A\vec{x}$ is one-to-one but not onto, A is $m \times n$, and m < n. ^{2.} Transform $T_A = A\vec{x}$ reflects points in \mathbb{R}^2 through the line y = 2 + x. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices. 3. Fill in the blanks. | (a) | $T_A = A\vec{x}$, where $A \in \mathbb{R}$ | $\mathbb{R}^{2\times 2}$, is a lin | near transform | that firs | t rotates | vectors in | \mathbb{R}^2 | clockwise | |-----|---|-------------------------------------|-----------------|-----------|-----------|--------------|----------------|-----------| | | by $\pi/2$ radians about | the origin, | then reflects t | them thre | ough the | line $x_1 =$ | x_2 . | What is | | | the value of $det(A)$? | | | | | | | | (b) B and C are square matrices with det(BC) = -5 and det(C) = 2. What is the value of $det(B) det(C^4)$? (c) A is a 6×4 matrix in RREF, and rank(A) = 4. How many different matrices can you construct that meet these criteria? (d) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2\times 2}$, projects points onto the line $x_1 = x_2$. What is an eigenvalue of A equal to? (e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to? (f) If A is 30×12 and $A\vec{x} = \vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30} , the dimension of NullA is 4. A is a 2×2 matrix whose nullspace is the line $x_1 = x_2$, and $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Sketch the nullspace of Y = AC. 5. Construct an SVD of $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Use your SVD to calculate the condition number of A.