Section 7.1 : Diagonalization of Symmetric Matrices

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

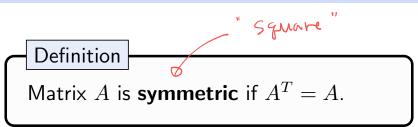
Topics

- 1. Symmetric matrices
- 2. Orthogonal diagonalization

Learning Objectives

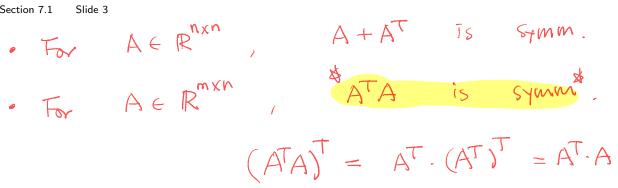
1. Construct an orthogonal diagonalization of a symmetric matrix, $A = PDP^{T}$.

Symmetric Matrices



Example. Which of the following matrices are symmetric? Symbols * and \star represent real numbers.

$$A = \begin{bmatrix} * \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = B^{\mathsf{T}} \quad C = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} = C^{\mathsf{T}}$$
$$D = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \qquad E = \begin{bmatrix} 4 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 4 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 4 & 2 \\ 0 & 7 & 4 \\ 0 & 7 & 6 & 0 \\ 1 & 4 & 0 & 3 \end{bmatrix}$$



$A^T A$ is Symmetric

A very common example: For **any** matrix A with columns a_1, \ldots, a_n ,

$$A^{T}A = \begin{bmatrix} -- & a_{1}^{T} & -- \\ -- & a_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & a_{n}^{T} & -- \end{bmatrix} \begin{bmatrix} | & | & \cdots & | \\ a_{1} & a_{2} & \cdots & a_{n} \\ | & | & \cdots & | \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \cdots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \cdots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \cdots & a_{n}^{T}a_{n} \end{bmatrix}}_{i = 1}$$

Entries are the dot products of columns of A

Recall real vectors $\cdot U \cdot v = u \cdot v$ · For Complex vectors U, V, $\mathcal{U} \cdot \mathcal{V} = \mathcal{U} \cdot \mathcal{V}$ Example $u = \begin{bmatrix} n \\ 1 \end{bmatrix}$ $u \cdot u = \begin{bmatrix} n \\ 1 \end{bmatrix} \begin{bmatrix} n \\ 1 \end{bmatrix}$ $= \begin{bmatrix} -\lambda & 1 \end{bmatrix} \begin{bmatrix} \lambda \\ 1 \end{bmatrix} = (-\lambda) \cdot \dot{\lambda} + 1$ = 2· For real A, X, Y $(A_{\chi}) \cdot y = (A_{\chi}) \cdot y = \chi \cdot (A^{T} \cdot y) = \chi \cdot (A^{T} \cdot y)$ If A is symm. $(A_{x}) \cdot y = x \cdot (A_{y})$

Symmetric Matrices and their Eigenspaces

Theorem

Section

A is a symmetric matrix, with eigenvectors \vec{v}_1 and \vec{v}_2 corresponding to two distinct eigenvalues. Then \vec{v}_1 and \vec{v}_2 are orthogonal.

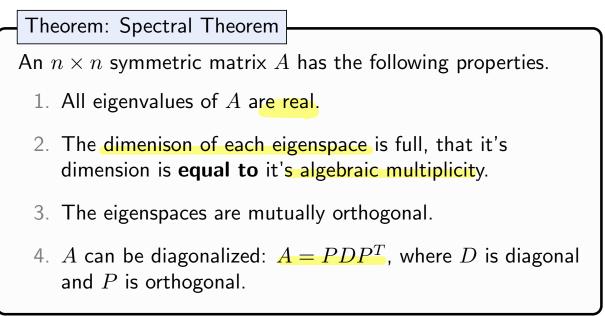
More generally, eigenspaces associated to distinct eigenvalues are orthogonal subspaces.

matrix with Arthonormal col Example 1 Symm. Diagonalize A using an orthogonal matrix. Eigenvalues of A are given. $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda = -1, 1$ Hint: Gram-Schmidt $E_{-1} = N_u I (A + I) = N_u I \left(\begin{array}{c} 0 & 2 & 0 \\ 0 & 2 & 0 \end{array} \right)$ $\Lambda = 1$ $= \operatorname{Nul} \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right)$ $v_{1} = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $E_{I} = N_{u}I (A - I) = N_{u}I \begin{bmatrix} -I & 0 & J \\ 0 & 0 & 0 \end{bmatrix}$ $\lambda = \langle : \rangle$ $= N_{u} \left(\begin{array}{c} | 0 - | \\ 0 = 0 \end{array} \right)$ Section 7.1 Slide 6 $\mathcal{V}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \qquad \qquad \mathcal{V}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

$$A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -v_1^T \\ -v_2^T \\ -v_3^T \end{bmatrix}$$

$$P \quad \text{sethogonal matrix} \quad P^T P = I \quad \Rightarrow \quad P^T = P^T \quad \text{ectral Theorem}$$

Recall: If P is an orthogonal $n \times n$ matrix, then $P^{-1} = P^T$, which implies $A = PDP^T$ is diagonalizable and symmetric.



Proof (if time permits):

Section 7.1 Slide 7

Sp

 $A = P \cdot D \cdot P^T$ $A^{T} = (P^{T})^{T} \cdot D^{T} \cdot P^{T} = P \cdot (D^{T}) \cdot P^{T}$ 1) If A TS, symm. 2^{EE} etgendue of A real Hen 2 is real. Proof. $A v = \lambda v$ for some $V \in \mathbb{C}^n$, $v \neq 0$ $\lambda \in \mathbb{C}$ $\lambda v \cdot v = A v \cdot v = (A v)^T \cdot v$ $\overline{\lambda} (v \cdot v) = \overline{v} \cdot (\overline{A}^{T} \cdot v) = v \cdot (\overline{A}^{T} v)$ $= \nabla \cdot (A \nabla) = \nabla \cdot (\lambda \nabla) = \lambda (\nabla \cdot \nabla)$ $\overline{\lambda} (\tau \cdot \tau) = \lambda (\tau \cdot \tau)$ $(\overline{\lambda} - \lambda) (\overline{V \cdot V}) = 0$ $\lambda = \overline{\lambda} \rightarrow \lambda is real \overline{\Delta}$ 2) À : real symm. E: eigenspace for 2 If $x \in E^{\perp}$ the $Ax \in E^{\perp}$. Proof $X \in E^{\perp} \iff X \cdot Y = 0$ for all $Y \in E$ $Ay = \lambda y$ $\lambda (x \cdot y) = 0$ $\times \cdot (\lambda y) = 0 = \times \cdot (Ay) = A \times \cdot y$ ĽΛ

11/13/24 Spectral Theorem A: real nxn symmetric (i) Eveny eigenative is <u>real</u> (ii) A is orthogonally diagonalizable. , that is, $A = P \cdot D \cdot P^{T}$, P: orthogonal matrix $= \left[\begin{array}{ccc} | & | & | \\ \nabla_{1} & \nabla_{2} & -- & \nabla_{n} \end{array} \right] \left[\begin{array}{c} \lambda_{1} \\ \lambda_{n} \end{array} \right] \left[\begin{array}{c} - & \nabla_{1}^{T} \\ - & \nabla_{n}^{T} \end{array} \right] \left[\begin{array}{c} - & \nabla_{1}^{T} \\ - & \nabla_{n}^{T} \end{array} \right]$ ONB for R" $= \lambda_{1} \overline{\mathcal{V}_{1} \cdot \mathcal{V}_{1}^{\mathsf{T}}} + \lambda_{2} \overline{\mathcal{V}_{2} \cdot \mathcal{V}_{2}^{\mathsf{T}}} + \cdots + \lambda_{n} \overline{\mathcal{V}_{n} \cdot \mathcal{V}_{n}^{\mathsf{T}}}$ $\in \mathbb{R}^{n \times n} \qquad (\text{Spectral Pecomposition})$ If v E R" is a unit vector. Note V.VT NXN symmetric \bigcirc $((v v \tau) = (v \tau) \cdot v \tau = v \cdot v \tau)$ Rank(v.vT) = 1 $\underbrace{E_{X}}_{2} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 3 \\ 3 \\ 6 \\ 9 \end{bmatrix}$ 2 $(In general, Rousk(A) = 1 \Rightarrow A = V \cdot WT)$ $(v \cdot v^{T})y = v \cdot (v^{T} \cdot y) = (v \cdot y) \cdot v$ 3 For y e IRn = proj (y)

Spectral Decomposition of a Matrix

 Spectral Decomposition

 Suppose A can be orthogonally diagonalized as

 $A = PDP^T = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \vec{u}_1^T \\ \vdots \\ \vec{u}_n^T \end{bmatrix}$

 Then A has the decomposition

 $A = \lambda_1 \vec{u}_1 \vec{u}_1^T + \cdots + \lambda_n \vec{u}_n \vec{u}_n^T = \sum_{i=1}^n \lambda_i \vec{u}_i \vec{u}_i^T$

Each term in the sum, $\lambda_i \vec{u}_i \vec{u}_i^T$, is an $n \times n$ matrix with rank 1.

Construct a spectral decomposition for ${\cal A}$ whose orthogonal diagonalization is given.

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = PDP^{T}$$

$$= \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 4/\sqrt{0} \\ 0 & 2 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

$$= 4 \cdot \left[\frac{1}{12}\right] \left[\frac{1}{12} + 2\right] \left[\frac{1}{12}\right] \left[\frac{1}{12} + 2\right] \left[\frac{1}{12}\right] \left[$$

$$= 4 \cdot \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} + 2 \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix}$$

Section 7.2 : Quadratic Forms

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

Topics

- 1. Quadratic forms
- 2. Change of variables
- 3. Principle axes theorem
- 4. Classifying quadratic forms

Learning Objectives

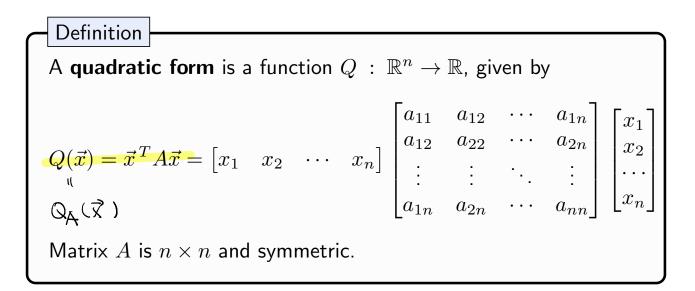
- 1. Characterize and classify quadratic forms using eigenvalues and eigenvectors.
- 2. Express quadratic forms in the form $Q(\vec{x}) = \vec{x}^T A \vec{x}$.
- 3. Apply the principle axes theorem to express quadratic forms with no cross-product terms.

Motivating Question Does this inequality hold for all x, y?

$$\frac{x^{2}-6xy+9y^{2}}{\|withimum} \ge 0 \qquad x, y \ge \text{Real}$$

$$(\chi - 3y)^{2} \ge 0 \qquad (\chi - 3y)^{2} \ge$$

Quadratic Forms



In the above, \vec{x} is a vector of variables.

Compute the quadratic form $\vec{x}^T A \vec{x}$ for the matrices below.

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 \\ 1 & -3 \end{bmatrix}$$

$$Q_{A}(x) = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 4x_{1} & 3x_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= 4x_{1}^{2} + 3x_{2}^{2}$$

$$Q_{B}(x) = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 4x_{1} + x_{2} & x_{1} - 3x_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= (4x_{1} + x_{2})x_{1} + (x_{1} - 3x_{2}) \cdot x_{2}$$

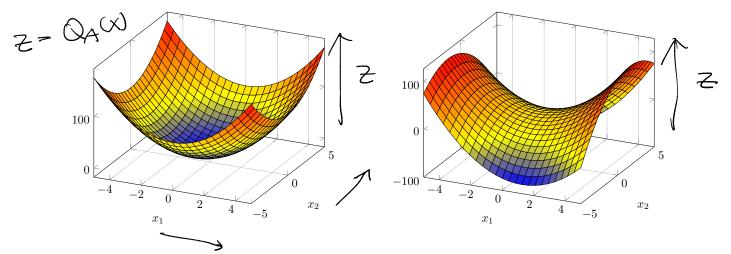
$$= 4x_{1}^{2} + 4x_{2}x_{1} + x_{1} \cdot x_{2} - 3x_{2}^{2}$$

$$= 4x_{1}^{2} + 2x_{1}^{2} + 2x_{1} - 3x_{2}^{2}$$
Section 7.2 Slide 11
$$A = \begin{bmatrix} x_{1} & x_{1} & x_{1} & x_{1} + 1 \cdot x_{1} \cdot x_{1} & x_{1} + 1 \cdot x_{1} \cdot x_{2} \\ 0 = x_{2} \cdot x_{2} \cdot x_{2} & x_{2} \end{bmatrix}$$

$$A = \begin{bmatrix} x_{1} & x_{1} & x_{1} + 1 \cdot x_{1} + 1 \cdot x_{1} \cdot x_{2} \\ 0 = x_{2} \cdot x_{2} \cdot x_{2} & x_{2} \end{bmatrix}$$

Example 1 - Surface Plots

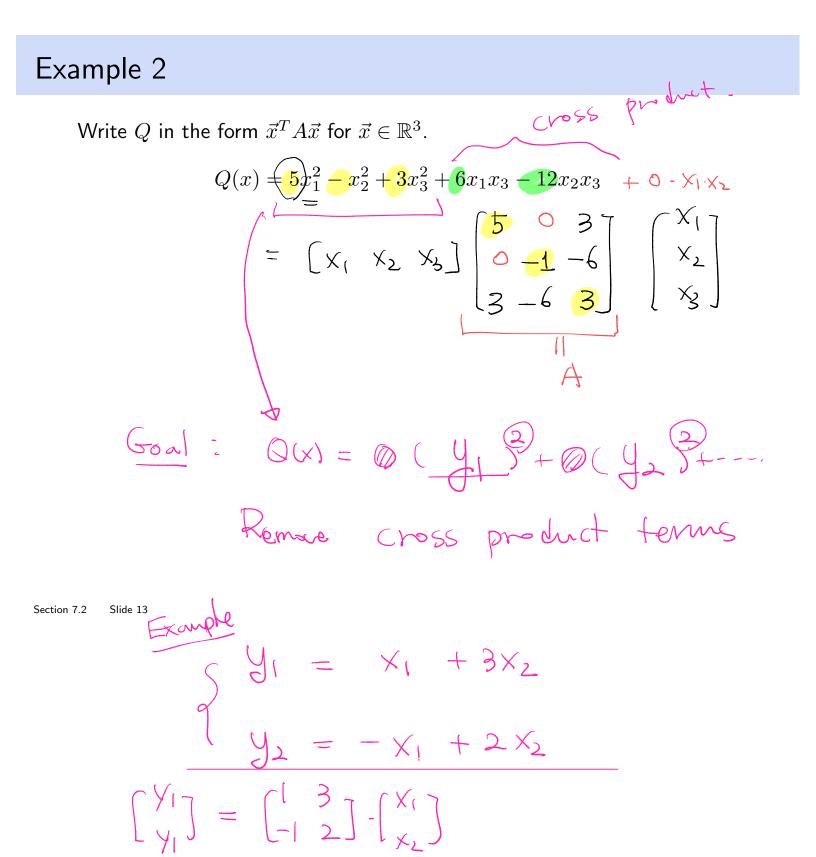
The surfaces for Example 1 are shown below.



Students are not expected to be able to sketch quadratic surfaces, but it is helpful to see what they look like.

$$Q_{A}(x) = 4x_{1}^{2} + 3x_{2}^{2} = 2$$

$$Q_{B}(x) = 4x_{1}^{2} + 2x_{1}x_{2} - 3x_{2}^{2} = 2$$





Change of Variable

If \vec{x} is a variable vector in \mathbb{R}^n , then a **change of variable** can be represented as

$$\vec{x} = P\vec{y}, \quad \text{or} \quad \vec{y} = P^{-1}\vec{x}$$

With this change of variable, the quadratic form $\vec{x}^T A \vec{x}$ becomes:

Make a change of variable $\vec{x} = P\vec{y}$ that transforms $Q = \vec{x}^T A \vec{x}$ so that it does not have cross terms. The orthogonal decomposition of A is given.

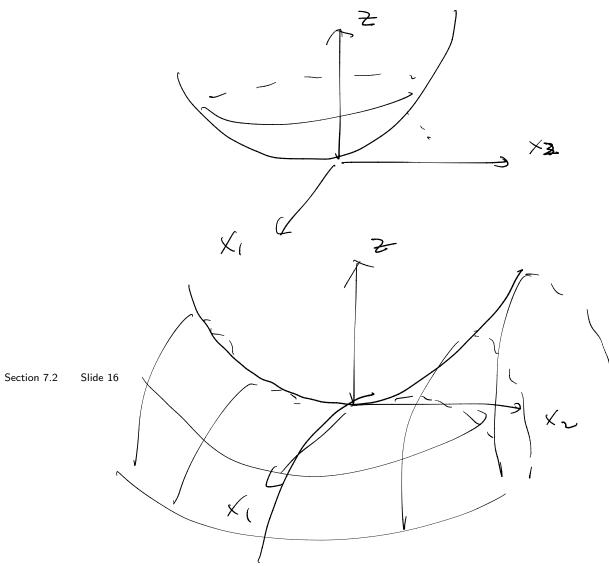
٧

Geometry

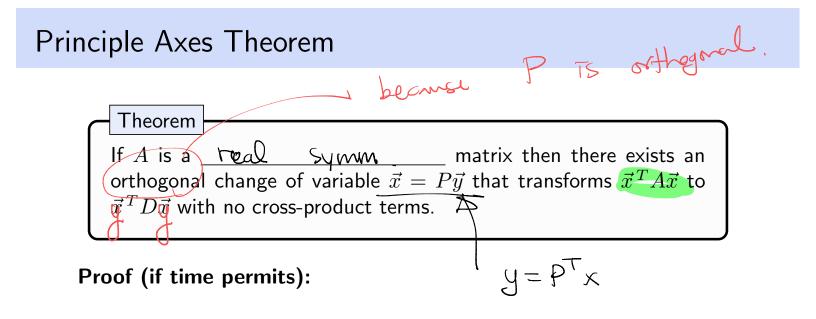
Suppose $Q(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric. Then the set of \vec{x} that satisfies

$$\mathbf{Z} \quad \mathbf{\mathcal{D}} = \vec{x}^T A \vec{x}$$

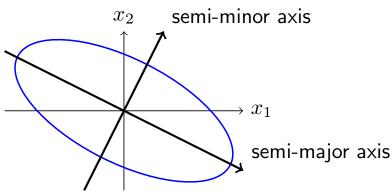
defines a curve or surface in \mathbb{R}^n .



$$II/IS/24 \qquad \begin{bmatrix} a_{II} a_{II} \cdots \\ a_{I} & a_{I}$$



Compute the quadratic form $Q = \vec{x}^T A \vec{x}$ for $A = \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$, and find a change of variable that removes the cross-product term. A sketch of Q is below.



$$Q_{A} = x^{T} \cdot A \cdot x \qquad A = \begin{bmatrix} 5 & 2 \\ 2 & 8 \end{bmatrix}$$

$$\lambda : \quad d_{4} + (A - \lambda I) = x^{2} - 13\lambda + 36$$

$$= (\lambda - q)(\lambda - 4) = 0$$

$$\lambda = q \cdot , 4$$

$$\lambda = q : \quad Nul(A - qI) = Nul\left[-\frac{4}{2} - 2 \right] = Nul\left[1 - \frac{1}{2} \right]$$

$$x = 4: \qquad Nul(A - 4I) = Nul\left[-\frac{4}{2} - 2 \right] = Nul\left[\frac{4}{2} - 2 \right]$$

$$U_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

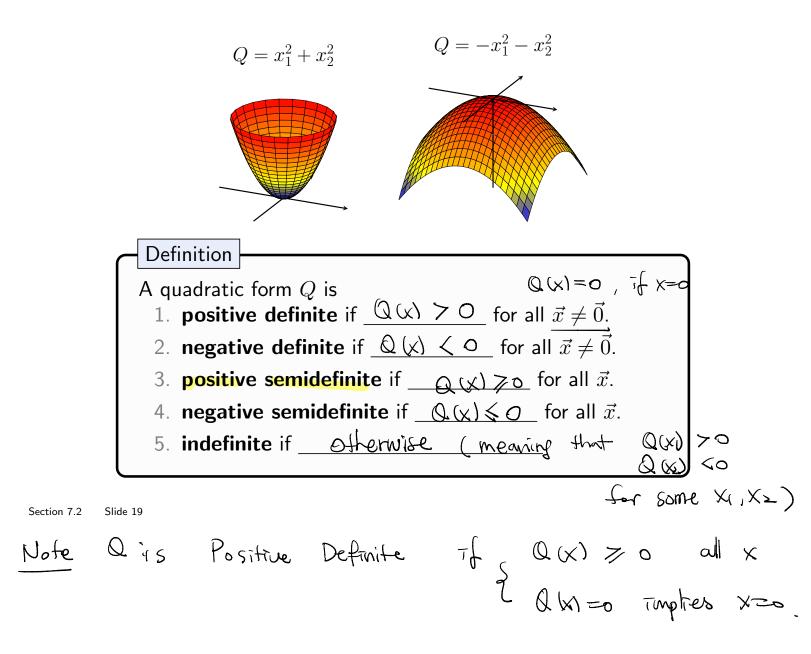
$$Q(x) = q \cdot y_{1}^{\lambda} + 4 \cdot y_{2}^{\lambda} = q \left(v_{1} \cdot x \right)^{2} + 4 \left(v_{2} \cdot x \right)^{2}$$

$$= q \cdot \left(\frac{1}{\sqrt{2}} (x_{1} + 2x_{2}) \right)^{2} + 4 \left(\frac{1}{\sqrt{2}} (2x_{1} - x_{2}) \right)^{2}$$

$$\left\{ (x_{1}, x_{2}) : Q(x) = 36 \right\} \qquad \frac{x_{2} - \frac{1}{2}x_{1}}{x_{2} - 2x_{1}}$$

$$q_{Y_{1}^{2}} + 4y_{2}^{2} = 36 \qquad \frac{y_{1}^{2}}{4} + \frac{y_{2}^{2}}{4} = 1$$

Classifying Quadratic Forms



Quadratic Forms and Eigenvalues

Theorem
If A is a real nxn Symm matrix with eigenvalues
$$\lambda_i$$
,
then $Q = \vec{x}^T A \vec{x}$ is
1. positive definite iff $\lambda_i \ge 0$ for all $\vec{n} = 1, \dots, n$
2. negative definite iff $\lambda_i \le 0$ for all $\vec{n} = 1, \dots, n$
3. indefinite iff $\lambda_i \le 0$ for Some \vec{n}_i \vec{j}

Proof (if time permits):

$$Q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

Example A: mxn real
Section 7.2 Slide 20

$$ATA$$
 : real nxn symm.
 $(Q(x) = (xT AT) (A \cdot x) = (Ax)T \cdot Ax$
 $= \|Ax\|^2 \ge 0$ for all x.
ATA TS positive semi-lifentite.

We can now return to our motivating question (from first slide): does this inequality hold for all $x, y? \xrightarrow{-3}{} x \cdot y \xrightarrow{-3}{} x$ $Q(x) = x^2 - 6xy + 9y^2 \ge 0$ $A = \begin{pmatrix} 1 & -3 \\ -3 & q \end{pmatrix} \qquad positive \quad semidetinite \quad ,$ $A = \begin{pmatrix} 1 & -3 \\ -3 & q \end{pmatrix} \qquad positive \quad semidetinite \quad ,$ $A = \begin{pmatrix} 2 & -3 \\ -3 & q \end{pmatrix} \qquad positive \quad semidetinite \quad ,$ $A = \begin{pmatrix} 1 & -3 \\ -3 & q \end{pmatrix} \qquad positive \quad semidetinite \quad ,$

Section 7.3 : Constrained Optimization

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

Topics

- 1. Constrained optimization as an eigenvalue problem
- 2. Distance and orthogonality constraints

Learning Objectives

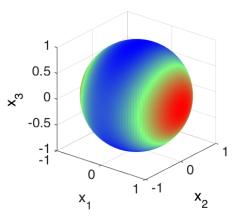
1. Apply eigenvalues and eigenvectors to solve optimization problems that are subject to distance and orthogonality constraints.

The surface of a unit sphere in \mathbb{R}^3 is given by

$$1 = x_1^2 + x_2^2 + x_3^2 = ||\vec{x}||^2$$

 \boldsymbol{Q} is a quantity we want to optimize

$$Q(\vec{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$$



Find the largest and smallest values of Q on the surface of the sphere.

$$3 = 3 (x_1^2 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$3 \leq Q \leq 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) \leq 9 (x_1^2 + x_2^2 + x_3^2) = 9$$

$$(x_1 + x_2^2 + x_3^2) \leq Q(x) = 3 (x_1^2 + x_2^2 + x_3^2) = 9$$

A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of

$$Q(\vec{x}) = \vec{x}^T A \vec{x}$$

subject to

 $||\vec{x}|| = 1$

That is, we want to find

 $m = \min\{Q(\vec{x}) : ||\vec{x}|| = 1\}$ $M = \max\{Q(\vec{x}) : ||\vec{x}|| = 1\}$

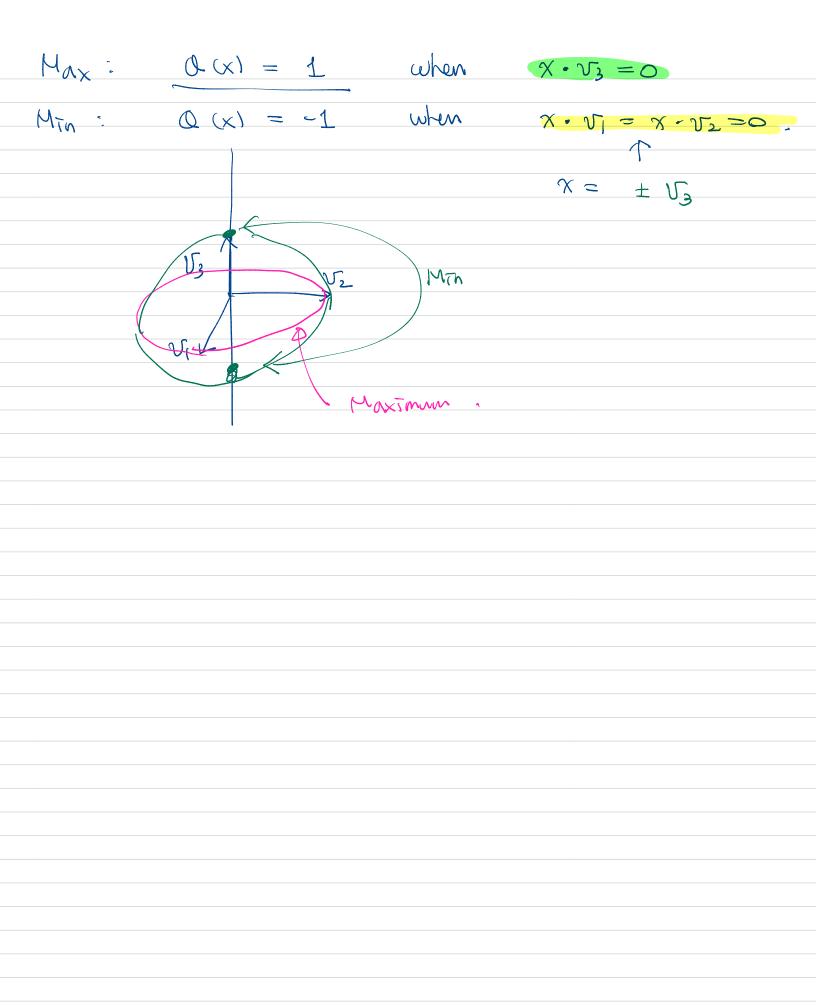
This is an example of a **constrained optimization** problem. Note that we may also want to know where these extreme values are obtained.

Constrained Optimization and Eigenvalues

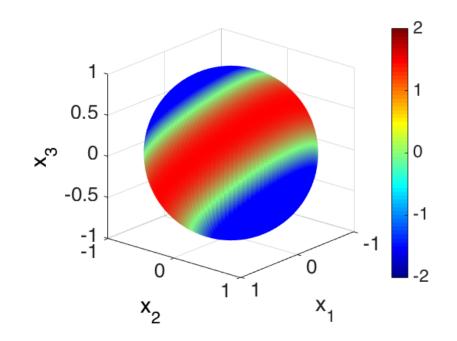
If $Q = \vec{x}^T A \vec{x}$, A is a real $n \times n$ symmetric matrix, with eigenvalues $\lambda_1 \ge \lambda_2 \ldots \ge \lambda_n$ and associated normalized eigenvectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ Then, subject to the constraint $||\vec{x}|| = 1$, • the maximum value of $Q(\vec{x}) = \lambda_1$, attained at $\vec{x} = \pm \vec{u}_1$. • the minimum value of $Q(\vec{x}) = \lambda_n$, attained at $\vec{x} = \pm \vec{u}_n$.

Proof:

Calculate the maximum and minimum values of $Q(\vec{x}) = \vec{x}^T A \vec{x}$, $\vec{x} \in \mathbb{R}^3$, subject to $|\vec{x}|| = 1$, and identify points where these values are obtained. $Q(\vec{x}) = x_1^2 + 2x_2x_3$ $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $det (A - \lambda I) = -(\lambda - 1)^{2} (\lambda + 1) = 0 \qquad \lambda = \frac{1}{2} (\lambda - 1)^{2}$ $N_{ul}(A - \overline{I}) = N_{ul} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -l & l \end{bmatrix}$ $\lambda = 1$: $V_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad V_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ Section 7.3 Slide 27 $Q(x) = \lambda_1 \cdot (v_1 \cdot x)^2 + \lambda_2 (v_2 \cdot x)^2 + \lambda_3 (v_3 \cdot x)^2$ $= (V_1 \cdot \chi)^2 + (V_2 \cdot \chi)^2 - (V_3 \cdot \chi)^2$ $\|(x)\|^2 = 1 = (v_1 \cdot x)^2 + (v_2 \cdot x)^2 + (v_3 \cdot x)^2$



The image below is the unit sphere whose surface is colored according to the quadratic from the previous example. Notice the agreement between our solution and the image.



An Orthogonality Constraint

Theorem

Suppose $Q = \vec{x}^T A \vec{x}$, A is a real $n \times n$ symmetric matrix, with eigenvalues

$$\lambda_1 \ge \lambda_2 \ldots \ge \lambda_n$$

and associated eigenvectors

$$\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$$

Subject to the constraints $||\vec{x}|| = 1$ and $\vec{x} \cdot \vec{u}_1 = 0$,

- The maximum value of $Q(\vec{x}) = \lambda_2$, attained at $\vec{x} = \vec{u}_*$.
- The minimum value of $Q(\vec{x}) = \lambda_n$, attained at $\vec{x} = \vec{u}_n$.

Note that λ_2 is the second largest eigenvalue of A.

Calculate the maximum value of $Q(\vec{x}) = \vec{x}^T A \vec{x}$, $\vec{x} \in \mathbb{R}^3$, subject to $||\vec{x}|| = 1$ and to $\vec{x} \cdot \vec{u}_1 = 0$, and identify a point where this maximum is obtained.

$$Q(\vec{x}) = x_1^2 + 2x_2x_3, \qquad \vec{u}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

$$\lambda_1 = \lambda_2 = 1, \qquad \lambda_3 = -1$$

$$\nabla_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad \nabla_2 = \frac{1}{1^2} \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \qquad \nabla_3 = \frac{1}{1^2} \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$$

$$Q(x) = 1 \cdot (\nabla \cdot x)^2 + (1 \cdot (\nabla_2 \cdot x)^2 + (-1) \cdot (\nabla_3 \cdot x)^2)$$

$$\{ (x)^2 = 1 = (\nabla \cdot x)^2 + (\nabla_2 \cdot x)^2 + (\nabla_3 \cdot x)^2$$

$$\{ (x)^2 = 1 = (\nabla \cdot x)^2 + (\nabla_2 \cdot x)^2 + (\nabla_3 \cdot x)^2$$

$$\{ (x)^2 = 1 = (\nabla \cdot x)^2 + (\nabla_2 \cdot x)^2 + (\nabla_3 \cdot x)^2$$

$$= 1$$
Section 7.3 Slide 30
$$(\nabla \cdot x) = 1 \qquad \text{when}$$

$$\{ x \cdot \nabla_3 = 0$$

$$(x - x)^2 = 1 = 0$$

$$(x - x)^2 = 1 \qquad \text{when}$$

$$\{ x \cdot x = 0$$

$$(x - x)^2 = 0$$

Example 4 (if time permits)

Calculate the maximum value of $Q(\vec{x}) = \vec{x}^T A \vec{x}$, $\vec{x} \in \mathbb{R}^3$, subject to $||\vec{x}|| = 5$, and identify a point where this maximum is obtained.

$$Q(\vec{x}) = x_1^2 + 2x_2x_3$$

$$M_{ax} = ? \qquad \underline{1}, \qquad 5 \qquad \underline{25}, \qquad \underline{5}$$

$$Q(x) = x^{T} \cdot A \cdot x$$

$$M_{ax} = 25 \qquad \text{when } ? \qquad \underline{x} = 5 = \pm 5 \cdot V_{1}$$

$$x \cdot V_{3} = 0 \quad \underline{k} \quad |x|| = 5$$
Slide 31

when

 $X = \pm 5V_3$

Section 7.3 Slide 31

 $M_{in} = -25$

Section 7.4 : The Singular Value Decomposition

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

Topics

1. The Singular Value Decomposition (SVD) and some of its applications.

Learning Objectives

- 1. Compute the SVD for a rectangular matrix.
- 2. Apply the SVD to
 - estimate the rank and condition number of a matrix,
 - construct a basis for the four fundamental spaces of a matrix, and
 - construct a spectral decomposition of a matrix.

Recall (Spectral Decomposition) A: nxn real symm. Then (i) Every eigenvalue is real. (ii) Diagonalizable A = P.D.PT $\{v_1, v_2, \cdots, v_n\}$: ONB for \mathbb{R}^n ejannector. $A = \lambda_1 \underbrace{v_1 \cdot v_1^T}_{+} + \lambda_2 \underbrace{v_2 \cdot v_2^T}_{+} + \cdots + \lambda_m \underbrace{v_n \cdot v_n^T}_{+}$ (iii) $P = [v_1 v_2 - - v_n], \quad P^T P = I = P.P^T$ $\mathcal{V}_1 \cdot \mathcal{V}_1^{\mathsf{T}} + \mathcal{V}_2 \cdot \mathcal{V}_2^{\mathsf{T}} + \cdots + \mathcal{V}_n \cdot \mathcal{V}_n^{\mathsf{T}}$ $A \cdot I = A v_1 \cdot v_1^T + A v_2 \cdot v_2^T + \cdots + A v_n \cdot v_n^T$ $= \lambda_1 \mathcal{V}_1 \cdot \mathcal{V}_1^{\top} \leftarrow \lambda_2 \mathcal{V}_2 \cdot \mathcal{V}_2^{\top} + \cdots + \lambda_n \mathcal{V}_n \cdot \mathcal{V}_n^{\top}$ A: mxn real Now, ATA: n×n real symm, positive seni definite $Q(x) = x^{T} (A^{T} A) \cdot x = (x^{T} A^{T}) (A \cdot x)$ $= (A \cdot x)^T (A \cdot x) = \|A \cdot \|^2 \gg 0$ Eigenvalues for ATA y $\int \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge \lambda_{n+1} = \cdots = \lambda_n = 0$ $\left\{ V_{1}, V_{2}, \cdots, V_{n} \right\} : ONB for R^{n}$ Eigenvectors For ATA $\Rightarrow A_{I} = A_{V_{I}} \cdot v_{I}^{T} + A_{V_{2}} \cdot v_{2}^{T} + --- + A_{V_{n}} \cdot v_{n}^{T}$

()
$$\nabla_{rul}$$
, ∇_{rul} , ∇_{r} , ∇_{r} , $eigenvective for $A^{T}A$, $\lambda = 0$
 $A^{T}A = 0$ for $k = r+1$, ..., n
 $0 = \nabla_{k}^{T} \cdot A^{T} \cdot A \cdot \nabla_{k} = (A \vee_{k})^{T} \cdot (A \vee_{k}) = |A \vee_{k}||^{A}$
 $A \vee_{k} = 0$
 $A = A \vee_{k} \cdot \nabla_{1}^{T} + A \vee_{2} \cdot \nabla_{2}^{T} + \dots + A \vee_{r} \cdot \nabla_{r}^{T}$.
(2) Col(A) = Speed Ae_{L}, Ae_{L}, ..., Ae_{n}
 e_{1}, \dots, e_{n} can be written of $[n \cdot (anb) \cdot d_{r} \vee_{1}^{T} \cdot \nabla_{n}^{T}$
 $= Speed A \vee_{1}, A \vee_{2}, \dots, A \vee_{r}^{T}$
 $(A \vee_{1}) \cdot (A \vee_{2}) = \nabla_{1}^{T} \cdot (A^{T} \cdot A \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $(A \vee_{1}) \cdot (A \vee_{2}) = \nabla_{1}^{T} \cdot (A^{T} \cdot A \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $= 0$ if $i \neq j$
 $(A \vee_{1}) \cdot (A \vee_{2}) = \nabla_{1}^{T} \cdot (A^{T} \cdot A \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $= 0$ if $i \neq j$
 $A \vee_{1} \cdot A \vee_{1} = A \vee_{1} \cdot (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $= 0$ if $i \neq j$
 $f \vee_{1} A \vee_{1} \cdot A \vee_{2} = \lambda_{1} (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot A \vee_{2} = \lambda_{1} (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot A \vee_{2} = \lambda_{1} (\nabla_{1} \cdot \nabla_{1}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot A \vee_{2} = \lambda_{1} (\nabla_{1} \cdot \nabla_{1}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot A \vee_{2} = \lambda_{1} (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot \nabla_{2} = \lambda_{1} (\nabla_{1} \cdot \nabla_{1}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot \nabla_{1} = \lambda_{1} (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot \nabla_{1} = \lambda_{1} (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot \nabla_{1} = \lambda_{1} (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} \cdot \nabla_{1} = \lambda_{1} (\nabla_{1} \cdot \nabla_{2}) = \lambda_{1} (\nabla_{1} \cdot \nabla_{2})$
 $f \vee_{1} A \vee_{1} + \nabla_{2} \cdot \nabla_{2} + \nabla_{$$

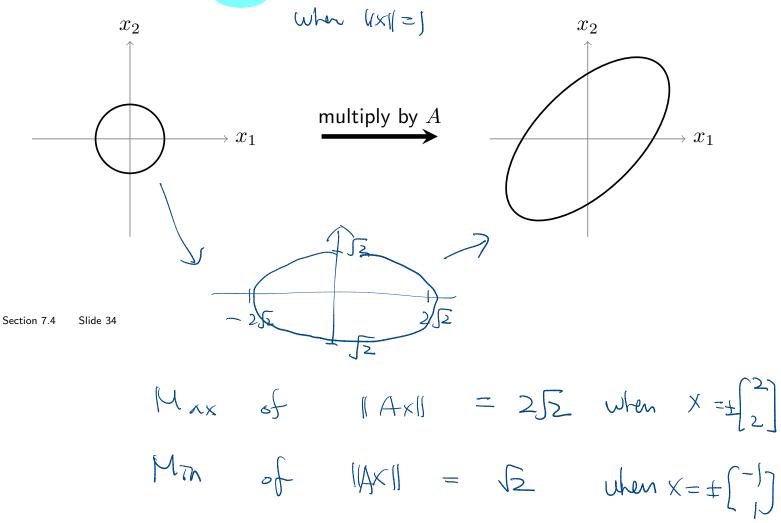
: Singular Value Decomposition.

Eigenvectors for AT.A { VI, V2, ~~, Vn1 ONB for R" Nul (ATA) of Vry, Vry, m, Vn (: ONB for NullA) Lui, ..., Ury : ONB for Nul (A)¹ 1' ATA Eigenrectures for 2=0 $C_{\mu}(A^{T})$ AUK - O Row (A) d U1, U2, ..., Ury : ONB for Col(A) in RM (B, Gram-Schmidt) hxn mxm U.S.VT Mxn U1 U2 Un Un+1 --- Um = $\sim \sim \sim$ Orthegoal Mat. VI V2 ~~~ V~! Orthogonal Mat. -G -G ---------

The linear transform whose standard matrix is $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$$

maps the unit circle in \mathbb{R}^2 to an ellipse, as shown below. Identify the unit vector \vec{x} in which $||A\vec{x}||$ is maximized and compute this length.



$$Q(x) = ||A \times ||^{2} = (A_{X})^{T} \cdot (A_{X})$$
$$= x^{T} \cdot (A^{T}A) \cdot x \cdot x$$

Example 1 - Solution

Singular Values

If the A has rank r, then $\{A\vec{v_1}, \dots, A\vec{v_r}\}$ is an orthogonal basis for ColA: For $1 \le j < k \le r$:

$$(A\vec{v}_{j})^{T}A\vec{v}_{k} = \bigcirc$$

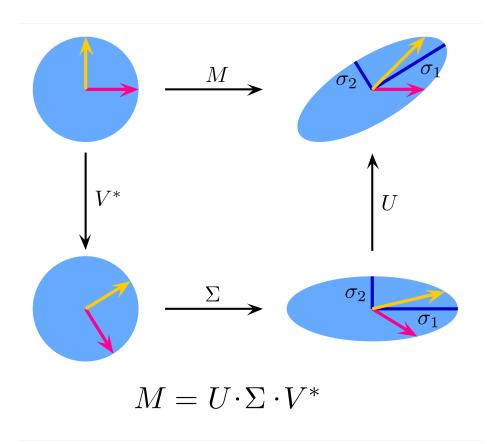
Definition: $\sigma_1 = \sqrt{\lambda_1} \ge \sigma_2 = \sqrt{\lambda_2} \cdots \ge \sigma_n = \sqrt{\lambda_n}$ are the singular values of A.

The SVD

The SVD

$$A = \bigcup_{n \neq n} A_{n} A_{n}$$

$$U_{i} = \frac{i}{\sigma_{i}} A v_{i}$$



Section 7.4 Slide 38

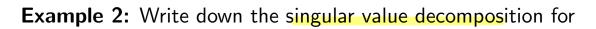
Algorithm to find the SVD of \boldsymbol{A}

Suppose A is $m \times n$ and has rank $r \leq n$.

- 1. Compute the squared singular values of A^TA , σ_i^2 , and construct Σ .
- 2. Compute the unit singular vectors of $A^T A$, $\vec{v_i}$, use them to form V.
- 3. Compute an orthonormal basis for ColA using

$$\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i, \quad i = 1, 2, \dots r$$

Extend the set $\{\vec{u}_i\}$ to form an orthonomal basis for \mathbb{R}^m , use the basis for form U.



Sectio

Example 3: Construct the singular value decomposition of

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_1 & u_2 & u_1 & u_2 & u_1 & u_2 & u_1 & u_1 & u_1 & u_2 & u_1 & u_1 & u_2 & u_2 & u_2 & u_1 & u_1 & u_1 & u_2 & u_2 & u_2 & u_2 & u_1 & u_1 & u_1 & u_2 &$$

$$d \underbrace{U_{2}, U_{3}}_{Nul} \underbrace{U_{3}}_{S} \underbrace{U_{$$

(Singular Value Decomposition) A: mxn real ATA: n×n real symm. positive semidetimite. $\lambda_1 > \lambda_2 > \cdots > \lambda_r > \lambda_{r+1} = \lambda_{r+2} = \cdots = \lambda_n = 0$ LUL, U2, ---, Un' ONB for R" eigenvectors. $AV_{k}=0$ for $k=r+1, r+2, \dots, n$ (Nul(A) = Nul(A^TA)) $A = \underbrace{\nabla_{1}}_{O_{1}} \underbrace{A}_{V_{1}} \cdot \underbrace{\nabla_{1}}_{V_{1}} + \underbrace{\nabla_{2}}_{V_{2}} \underbrace{A}_{V_{2}} \underbrace{\nabla_{2}}_{V_{2}} + \underbrace{\nabla_{2}}_{V_{2}} \underbrace{A}_{V_{2}} \underbrace{A}_{V_{2}} \underbrace{A}_{V_{2}} + \underbrace{\nabla_{2}}_{V_{2}} \underbrace{A}_{V_{2}} \underbrace{A}_{V_{2}} + \underbrace{\nabla_{2}}_{V_{2}} \underbrace{A}_{V_{2}} \underbrace{A}_{V_{2}} + \underbrace{\nabla_{2}}_{V_{2}} \underbrace{A}_{V_{2}} \underbrace{A}_{V_{2$ $= \overline{U_1} \cdot U_1 \cdot \overline{V_1} + \overline{U_2} U_2 \cdot \overline{V_2} + \cdots + \overline{V_r} U_r \cdot \overline{V_r}$ $\{u_1, u_2, \dots, u_r\}$: ONB for <u>Col(A)</u> d Ure, ---, Umy; ONB for $C_1(A)^{\perp}$ (r = Rank(A)= Rank (AT.A)) { Vry, Vry, ..., Vry; ONB for Nul(A) eigenvector for $\lambda = 0$ TO NULLATA) = NULLA) 2V1, V2, ---, VrY: ONB for NullAT = Col(AT) = Row(A) $\mathbf{U} = \begin{bmatrix} \mathbf{U}_1, \cdots, \mathbf{U}_m \end{bmatrix} \quad \mathbf{V} = \begin{bmatrix} \mathbf{V}_1, \cdots, \mathbf{V}_m \end{bmatrix}$

Applications of the SVD

The SVD has been applied to many modern applications in CS, engineering, and mathematics (our textbook mentions the first four).

- Estimating the rank and condition number of a matrix
- Constructing bases for the four fundamental spaces
- Computing the pseudoinverse of a matrix
- Linear least squares problems
- Non-linear least-squares https://en.wikipedia.org/wiki/Non-linear_least_squares
- Machine learning and data mining https://en.wikipedia.org/wiki/K-SVD
- Facial recognition https://en.wikipedia.org/wiki/Eigenface
- Principle component analysis https://en.wikipedia.org/wiki/Principal_component_analysis
- Image compression

Students are expected to be familiar with the 1^{st} two items in the list.

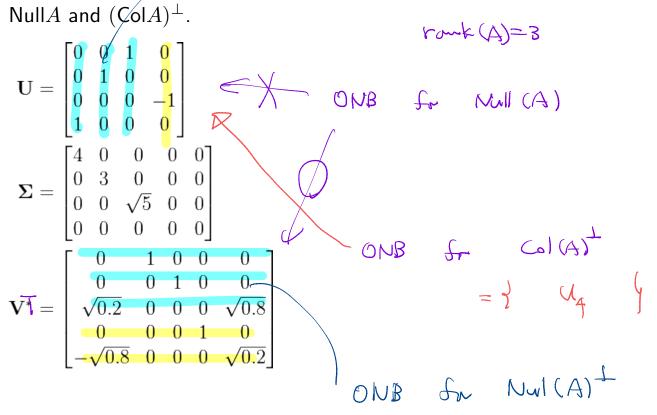
The Condition Number of a Matrix $z = \begin{bmatrix} \sigma_{1} & \sigma_{2} \\ \sigma_{2} & \sigma_{3} \end{bmatrix}$	
If A is an invertible $n \times n$ matrix, the ratio	
$\frac{\sigma_1}{\sigma_n} \in \text{Smallest}.$	
is the condition number of A.	

Note that:

- The condition number of a matrix describes the sensitivity of a solution to $A\vec{x} = \vec{b}$ is to errors in A.
- We could define the condition number for a rectangular matrix, but that would go beyond the scope of this course.

$$V = V^{\star}$$

For $A = U\Sigma V^*$, determine the rank of A, and orthonormal bases for NullA and $(\mathcal{C}olA)^{\perp}$.



Example 4 - Solution

The Four Fundamental Spaces

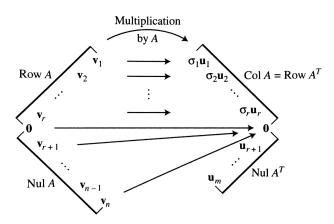


FIGURE 4 The four fundamental subspaces and the action of A.

- 1. $A\vec{v}_s = \sigma_s \vec{u}_s$.
- 2. $\vec{v}_1, \ldots, \vec{v}_r$ is an orthonormal basis for RowA.
- 3. $\vec{u}_1, \ldots, \vec{u}_r$ is an orthonormal basis for ColA.
- 4. $\vec{v}_{r+1}, \ldots, \vec{v}_n$ is an orthonormal basis for NullA.
- 5. $\vec{u}_{r+1}, \ldots, \vec{u}_n$ is an orthonormal basis for Null A^T .

The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for any matrix with rank \boldsymbol{r}

$$A = \sum_{s=1}^{r} \sigma_s \vec{u}_s \vec{v}_s^T,$$

where \vec{u}_s, \vec{v}_s are the s^{th} columns of U and V respectively.

For the case when $A = A^T$, we obtain the same spectral decomposition that we encountered in Section 7.2.